Multiple linear regression model applied to data for biogas power generation

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23968

Keywords:

Energy; Biomass; Biogas; Biodigesters.

Abstract

World industrialization has been growing on a large scale, thereby causing the global energy demand to increase as well. That said, in order to have more energy available, much more will be required from the environment. Because some energy-using techniques are extremely aggressive to the ecosystem, renewable energy sources play a major role compared to the effects of energy generation and their relationship to other energy sources. Biomass has received much attention from the media and political leaders, both regarding alternative fuel sources and a way to minimize dependence on raw material imports from developed countries. This research uses a modelling method using CH4 Biogas Simulator comparatives for multi-variable evaluation in order to determine the regression equation, thus obtaining the amount of crude biogas and electrical energy that can be generated using biogas from cattle manure, pigs and poultry by means of biodigesters. The generated equation is easy to apply and evolve in model Y= 1.572731 + 0.985985 x cattle + 0.191372 x pigs + 0.021287 x birds with (r= 0.99) and is therefore suitable for estimating the potential value of biogas.

References

Alves, M. O., et al. (2014). Biodigestores - Fonte Renovável de Energia. UniCesumar. 5 p. ISBN: 9788580847246

ANEEL (2002). Atlas de Energia Elétrica do Brasil. (3ª.ed.): ANEEL, 236 p. ISBN: 978-85-87491-10-7.

CETESB (2019). Biogás. https://cetesb.sp.gov.br/biogas/.

Ch4Agroenergia (2019). https://inovacao2020.wixsite.com/ch4agroenegia

Eleven Advantages and Disadvantages of Renewable Energy (2019). https://vittana.org/11-advantages-and-disadvantages-of-renewable-energy.

Goldemberg, J., & Lucon, O. (2006-2007). Energias Renováveis: Um futuro sustentável: Revista Usp, 15 p.

Guimarães, P. R. B. (2012) Métodos Quantitativos Estatísticos. (1ª ed.): IESDE BRASIL S.A., 256 p. ISBN: 978-85-387-3028-6.

Hydroeletrectricity - BP Statistical Review of World Energy (2019). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-hydroelectricity.pdf.

Iniciativa beneficia projetos de compostagem de resíduos (2019). https://www.vgresiduos.com.br/blog/iniciativa-beneficia-projetos-de-compostagem-de-residuos.

Larson, R., & Farber, B (2008). Estatística Aplicada. Pearson Education (2ª Edição).

Lumi, M., et al. (2014). Manual Básico de Biogás. (1ª ed.): Editora Univates, 70p. ISBN: 978-85-8167-073-7.

Medina, J. M., et al. (2016). Eficiencia Energética y producción de Energía Eléctrica a partir de Biogás. 148 p. Dissertação (Graduação). Departamento de Ingeniería Eléctrica – Instituto Especializado de Estudios Superiores Loyola.

Minas Gerais, Companhia Energética (2012). Alternativas Energéticas: Uma visão Cemig. Belo Horizonte: 373p. ISBN: 978-85-87-929-51-8

Montgomery, D. C., & Runger, G. C (2012). - Estatística Aplicada e Probabilidade para Engenheiros. Editora LTC – (2ª Edição).

O globo (2018). https://oglobo.globo.com/economia/brasil-tem-matriz-energetica-menos-poluente-do-mundo-segundo-agencia-internacional-23244753.

Rodrigues, S. C. A. (2012). Modelo de regressão linear e suas aplicações. 94 p. Relatório de Estágio (Mestrado). Universidade da Beira Interior.

Schiffer, H. W (2016). World Energy Resources. London: World Energy Council, 1028 p. ISBN: 9780946121588

Software CH4 - Biogas Simulator. Versão 2.3.3 [S. I.], 12 nov. (2015). https://apkpure.com/ch4-biogas-simulator/br.com.biogasch4.CH4BiogasSimulator.

Solarschools (2019). Advantages and Disadvantages of Renewable Energy. https://www.solarschools.net/knowledge-bank/renewable-energy/advantages-disadvantages.

Tunes, C. R. (2017). Produção De Biogás A Partir Da Digestão Anaeróbica De Efluentes Orgânicos Em Reator Uasb. 2017. 75 p. Dissertação (Mestrado). Campus Universitário de Gurupi – Universidade Federal do Tocantins.

Vasconcelos, G. F. (2017) Biomassa: A energia do futuro. (1ª ed.): Senac, 166p.

Published

11/12/2021

How to Cite

CARVALHO, M. da S. Multiple linear regression model applied to data for biogas power generation. Research, Society and Development, [S. l.], v. 10, n. 16, p. e224101623968, 2021. DOI: 10.33448/rsd-v10i16.23968. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23968. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings