Differences in wood properties among Eucalyptus grandis and Eucalyptus grandis x Eucalyptus urophylla with different degrees of ploidy
DOI:
https://doi.org/10.33448/rsd-v10i16.24035Keywords:
Chromosomes; Biomass; Wood quality; Forest breeding; Polyploidy.Abstract
We compared the anatomy, density, chemical contents, and bioenergy values of Eucalyptus grandis and hybrids of Eucalyptus grandis x Eucalyptus urophylla wood originating from diploids, triploids and tetraploids. We hypothesize that Eucalyptus grandis and hybrids of Eucalyptus grandis x Eucalyptus urophylla with different degrees of ploidy have variations as a result of different sets of chromosomes producing different phenotypic expressions and chemical constituents, such as variation in cell size and frequency, which would directly influence wood quality. Twenty-year-old trees were cut, eight for each ploidy: diploids and tetraploids are E. grandis; triploids are E. grandis x E. urophylla. We use standardized techniques. Our hypothesis was confirmed. Triploid and tetraploid trees presented wider trunks, taller trees with longer stems and wider crowns compared to diploid trees. Wood density showed significant radial variation only in diploids, while triploid and tetraploid trees were more homogeneous. In polyploid trees, the anatomical features did not clearly present a radial pattern. Triploid and tetraploid trees presented higher density wood than diploid trees. The chemical constituents varied from pith to bark in the three ploidies, but no differences between ploidies were found. For energy generation purposes, diploid and triploid trees are more desirable than tetraploid trees.
References
Armstrong, J. E. (1982). Polyploidy and wood anatomy of mature white ash, Fraxinus americana. Wood and Fiber, 14(3), 331-339.
Associação Brasileira de Normas Técnicas-ABNT. Norma NBR 8633.1984. Determinação do poder calorífico superior. 1, 13.
Associação Brasileira de Normas Técnicas-ABNT. Norma NBR 14929.2003. Determinação da umidade da madeira. 1,3.
Baas, P., Ewers, F. W., Davis, S. D., & Wheeler, E. A. (2004). Evolution of xylem physiology. In Poole, I., Hemsley, A. 273-295pp.
Beaulieu, J. M., Leitch I. J., Patel, S., Pendharkar, A. & Knight, C. A. (2008). Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol., 179(4), 975-986. doi: 10.1111/j.1469-8137.2008.02528.x.
Bedell, P. E. (2006). Tree Breeding for Genetic Improvement of Tropical Tree Species.
Berlyn, G. P. & Miksche, J. P. (1976). Botanical microtechnique and cytochemistry.
Brodersen, C. R., Mcelrone, A. J., Choat, B., Matthews, M. A. & Shackel, K. A. (2010). The dynamics of embolism repair in xylem: in vivo visualizations using high resolution computed tomography. Plant Physiology, 154(3), 1088-1095. doi: https://doi.org/10.1104/pp.110.162396
Cardoso, G. V., Foelkel, C. E. B., Frizzo, S. M. B., Rosa, C. A. B., Assis, T. F. & Oliveira, P. (2011). Effect of lignin content of Eucalyptus globulus labill. wood in kraft pulping performance. Ciência Florestal, 21(1), 133-147. doi: https://doi.org/10.5902/198050982756
Chi, N. Q., Griffin, R. A., Harbard, J. L., Harwood, C. E., Le, S., Nguyen, K. D. & Van Pham, B. (2018). Reduced fertility in triploids of Acacia auriculiformis and its hybrid with A. mangium. Euphytica, 214 (77), 1-14. doi: https://doi.org/10.1007/s10681-018-2157-8
Corneillie, S., De Storme, N., Van Acker, R., Fangel, Ju., De Bruyne, M., De Rycke, R., Geelen, D., Willats, W. G. T., Vanholme B. & Boerjana, W. (2019). Polyploidy affects plant growth and alters cell wall composition. Plant Physiology, 179 (1), 74-87. doi: https://doi.org/10.1104/pp.18.00967.
Costa, C. G., Callado, C. H., Coradin, V. T. R., Carmello-Guerreiro, S. M. (2006). Xilema. In: Anatomia Vegetal. 129-154pp.
De Baerdemaeker, N. J. F., Hias, N., Van Den Bulcke, J., Keulemans, W. & Steppe, K. (2012). The effect of polyploidization on tree hydraulic functioning. American Journal of Botany, 105(2), 161-171. doi:10.1002/ajb2.1032
Diallo, A. M., Nielsen, L. R., Kjær, E. D., Petersen, K. K. & Ræbild, A. (2016). Polyploidy can Confer Superiority to West African Acacia senegal (L.) Willd. Trees. Frontiers in Plant Science, 14(7), 1-10. doi: 10.3389/fpls.2016.00821
Dias, R. Z. (2016). Poliploidização induzida in vitro, como estratégia biotecnológica para a otimização da cultura de eucalipto. (2016). Dissertação de Mestrado.
Einspahr, D. W. (1984). Production and utilization of triploid hybrid aspen. Iowa State Journal of Research, 58(4), 401-409.
Fantuzzi Neto, H. Qualidade da madeira de eucalipto para produção de celulose kraft. (2012). Tese de doutorado.
Glass S. V. & Zelinka, S. L. (2010). Moisture relations and physical properties of wood.
Greer, B. T., Still, C., Cullinan, G. L., Brooks, J. R. & Meinzer, F. C. (2018). Polyploidy influences plant-environment interactions in Quaking Aspen (Populus tremuloides Michx.). Tree Physiology, 38(4), 630-640. doi: 10.1093/treephys/tpx120
Griffin, A. R., Twayi, H., Braunstein, R., Downes, G. M., Son, D. H. & Harwood, C. E. (2014). A comparison of fibre and pulp properties of diploid and tetraploid Acacia mangium grown in Vietnam. Appita Journal, 67(3), 43-49.
Griffin, A. R., Chi, N. Q., Harbard, J. L., Son, D. H., Harwood, C. E., Price, A., Vuong, T. D., Koutoulis, A. & Thinh, H. H. (2015). Breeding polyploid varieties of tropical acacias: progress and prospects. Southern Forests, 77(1), 41-50. doi: https://doi.org/10.2989/20702620.2014.999303
Günther, B., Gebauer, K., Barkowski, R., Rosenthal, M. & Bues, C.T. (2012). Calorific value of selected wood species and wood products. European Journal of Wood and Wood Products, 70(5), 755-757. doi: https://doi.org/10.1007/s00107-012-0613-z
Han, C., Xu, J. M., Du, Z. H., Li, G. Y., Zeng, B. S., Wu, S. J. & Wang, W. (2011). Polyploidy induction of clone of Eucalyptus grandis with colchicine. African Journal of Biotechnology, 10(66), 14711-14717. doi: https://doi.org/10.5897/AJB11.505
Harbard, J. L., Griffin, A. R., Foster, S., Brooker, C., Kha, L. D. & Koutoulis, A. (2012). Production of Colchicine-induced autotetraploids as a basic for sterility breeding in Acacia mangium Willd. Forestry: An International Journal of Forest Research, 85(3), 427-436. https://doi.org/10.1093/forestry/cps041.
Hao, G. Y., Lucero, M. E., Sanderson, S. C., Zacharias, E. H. & Holbrook, N. M. (2013). Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytologist, 197(3), 970-978. doi: https://doi.org/10.1111/nph.12051
Hoadley, B. (2000). Understanding wood: a craftsman’s guide to wood technology.
Hoshino, Y., Miyashita, T. & Thomas, T. D. (2011). In vitro culture of endosperm and its application in plant breeding: approaches to polyploidy breeding. Scientia Horticulture, 130(1), 1-8. doi: https://doi.org/10.1016/j.scienta.2011.06.041
Indústria Brasileira de Árvores-IBÁ (2020). The brazilian planted tree industry. Disponível em: https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf Acesso em: 26 nov. 2021
Janick, J. & Moore, J. N. (1996). Tree and Tropical Fruits, Fruit Breeding.
Johansen, D. A. (1940). Plant Microtechnique.
Kang, X. Y. (2010). Some understandings on polyploid breeding of poplars. Journal of Beijing Forestry University, 32(5), 149-153.
Kang, X. Y. (2020). Research progress and prospect of triploid breeding of forest trees. Scientia Sinica, 50(2), 136-143. doi: https://doi.org/10.1360/SSV-2019-0126
Lachenbruch, B., Moore, J. R. & Evans, R. (2011). Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer, F. C., Lanchenbruch, B. & Dawson, T.E. Size-and age-related changes in tree structure and function (pp. 121-164).
Li, W. L., Berlyn, G. P. & Ashton, P. M. S. (1996). Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). American Journal of Botany, 83(1), 15-20. doi: https://doi.org/10.1002/j.1537-2197.1996.tb13869.x
Lin, H., Jian, M., Liang, L. Y., Pei, W. J., Liu, X. Z. & Zhang, H. Y. (2010). Production of polyploids from cultured shoot tips of Eucalyptus globulus Labill by treatment with colchicine. African Journal of Biotechnology, 9(15), 2252-2255. doi: https://doi.org/10.5897/AJB2010.000-3028.
Longui, E. L., Lima, I. L., Andrade, I. M., Freitas, M. L. M., Florsheim, S. M. B., Zanatto, A. C. S. & Silva Júnior, F. G. (2011). Seed provenance influences the wood structure of Gallesia integrifolia. IAWA Journal, 32(3), 361-374. doi: 10.1163/22941932-90000064
Maherali, H., Walden, A. E. & Husband, B. C. (2009). Genome duplication and the evolution of physiological responses to water stress. New Phytol., 184(3), 721-731. doi: https://doi.org/10.1111/j.1469-8137.2009.02997.x
Mc Garigal, K., Cushman, S. & Stafford, S. (2000). Multivariate Statistics for Wildlife Ecology Research.
Menucelli, J. R., Amorim, E. P., Freitas, M. L. M., Zanata, M., Cambuim, J., Moraes, M. L. T., Yamaji, F. M., Silva Júnior, F. G. & Longui, E. L. (2019). Potential of Hevea brasiliensis clones, Eucalyptus pellita and Eucalyptus tereticornis wood as raw materials for bioenergy based on higher heating value. BioEnergy Research, 12(4), 992-999. doi: 10.1007/s12155-019-10041-6
Oda, S., Mello, E. J., Menck, A. L. M., González, E. R., Souza, I. C. G., Siqueira, L. & Carvalho, C.R. (2014). Induction and identification of polyploidy Eucalyptus grandis and Eucalyptus grandis x Eucalyptus urophylla plants. Proceedings of the IUFRO Acacia 2014 Conference “Sustaining the Future of Acacia Plantation Forestry” Anais..pp. 9, Hue, Vietnam.
Praça, M. M., Carvalho, C. R. & Boaventura-Novaes, C. R. D. (2009). Nuclear DNA content of three Eucalyptus species estimated by flow and image cytometry. Australian Journal of Botany, 57(6), 524-531. doi: 10.1071/BT09114
Rossi, S., Cairo, E., Krause, C. & Deslauriers, A. (2014). Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Annals of Forest Science, 72(1), 77-87. doi: 10.1007/s13595-014-0399-8
Roth, O. S. Indução de Poliploidia em Clones de Eucalyptus urophylla S.T. Blake. (1984). Dissertação de mestrado.
Sebbenn, A. M., Freitas, M. L. M., Zanatto, A. C. S., Morais, E. & Moraes, M. A. (2009). Comportamento da variação genética entre e dentro de procedências e progênies de Gallesia integrifolia Vell. Moq. para caracteres quantitativos. Revista do Instituto Florestal, 21(2), 151-163.
Silva, M. G., Numazawa, S., Araujo, M. M., Nagaishi, T. Y. R. & Galvão, G. R. (2007). Carvão de resíduos de indústria madeireira de três espécies florestais exploradas no município de Paragominas, PA. Acta Amazonica, 37(1), 61-70.
Soltis, D. E., Albert, V. A., Leebens-Mack, J., Bell, C. D., Paterson, A. H., Zheng, C., Sankoff, D., De Pamphilis, C. W., Wall, K. & Soltis, P. S. (2009). Polyploidy and Angiosperm Diversification. American Journal of Botany, 96(1), 336-348. doi: 10.3732/ajb.0800079
Swamy, B. G. L. & Govindarajalu, E. (1957). Anatomical studies in polyploid strains of Parthenium argentatum. Journal of the Asiatic Society Letters & Science, 23(1-2), 43-54.
Technical Association of the Pulp and Paper Industry-TAPPI. (2011). Standard T 222 om-11: Acid insoluble lignin in wood and pulp.
Technical Association of the Pulp and Paper Industry-TAPPI. (1999). Standard T 204 cm-97: Solvent extractives of wood and pulp.
Telmo, C. & Lousada, J. (2011). Heating values of wood pellets from different species. Biomass and Bioenergy, 35(7), 2634-2639. doi: https://doi.org/10.1016/j.biombioe.2011.02.043
Tyree, M. T. & Zimmerman, M. H. (2002). Xylem structure and the ascent of sap.
Vyas, P., Bisht, M. S., Miyazawa, S. I., Yano, S., Noguchi, K., Terashima, I. & Funayama-Noguchi, S. (2007). Effects of polyploidy on photosynthetic properties and anatomy in leaves of Phlox drummondii. Functional Plant Biology, 34(8), 673-682. doi: https://doi.org/10.1071/FP07020
Zhai, X. Q., Zhang, X. S., Zhao, Z. L., Deng, M. J. & Fan, G. Q. (2012). Study on wood physical properties of tetraploid Paulownia fortunei. Journal of Henan Agricultural University, 46(6), 651-654.
Zhang, W. W., Song, J., Wang, M., Liu, Y. Y., Lil, N., Zhang, Y. J., Holbrook, N. M. & Hao, G. Y. (2017). Divergences in hydraulic architecture form an important basis for niche differentiation between diploid and polyploid Betula species in NE China. Tree Physiology, 37(5), 604-616. doi: https://doi.org/10.1093/treephys/tpx004
Zobel, B. J. & Jett, J. B. (1995). Genetics of Wood Production.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Eduardo Luiz Longui; Guilherme Henrique Custódio; Erick Phelipe Amorim; Francides Gomes da Silva Júnior; Shinitiro Oda; Izabel Christina Gava Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.