Household appliance usage recommendation based on demand forecasting and multiobjective optimization
DOI:
https://doi.org/10.33448/rsd-v11i1.24515Keywords:
Time Series Forecasting; Multi-objective optimization; Smart Home Systems; Recommendation systems.Abstract
Accelerated population growth in the 21st century and increased demand for energy sources, associated with climate change, have resulted in two main challenges: the search for sustainable energy sources and the need to find more efficient ways to use extant sustainable sources. The forecasting module provides an estimate of the future usage of these appliances and it is the source of the recommended module’s suggestion. Time Series Forecasting techniques, such as Autoregressive Integrated Moving Average, LongShort Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), and Support Vector Regression, were tested for the predictive module. Multiobjective optimization techniques such as NonSorted Genetic Algorithm II (NSGA II), MultiObjective Particle Swarm Optimization (MOPSO), Speed constrained Multi-objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), for example, were tested for the Recommendation Module. The Forecasting and Recommendation module experiments were performed independently. In the Forecasting Module, the results and statistical tests revealed LSTM as the best suited technique for forecasting the loads of the majority of the appliances tested (in this case seven) in terms of root mean square error. In the experiments performed for the recommendation module, NSGA II showed a higher overall performance compared to other metrics in terms of hyper volume of the Pareto Front generated. This work presents the potential of using both Predictive Models and MultiObjective Optimization Techniques combined to reduce energy usage in household environments.
References
Bergmeir, C., & Benítez, J. M. (2012, May). On the use of cross validation for time series predictor evaluation. Information Sciences, 191, 192–213. 10.1016/j.ins.2011.12.028
Box, G., Jenkins, G., & Reinsel, G. (1994). Time series analysis: Forecasting and control. Prentice Hall. https://books.google.com.br/books?id=sRzvAAAAMAAJ
Cao, L. (2003, April). Support vector machines experts for time series forecasting. Neurocomputing, 51, 321–339. 10.1016/s09252312(02)005775
Cerqueira, V., Torgo, L., & Mozetic, I. (2019). Evaluating time series forecasting models: An empirical study on performance estimation methods.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling.
Coello, C. C., & Lechuga, M. (n.d.). MOPSO: a proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 congress on evolutionary computation. CEC 02 (cat. no.02th8600). IEEE. 10.1109/cec.2002.1004388
Dao, V., Ishii, H., Takenobu, Y., Yoshizawa, S., & Hayashi, Y. (2020, February). Intensive quadratic programming approach for home energy management systems with power utility requirements. International Journal of Electrical Power & Energy Systems, 115, 105473. 10.1016/j.ijepes.2019.105473
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002, April). A fast and elitist multiobjective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. 10.1109/4235.996017
Din, G. M. U., Mauthe, A. U., & Marnerides, A. K. (2018, March). Appliance Level short term load forecasting using deep neural networks. In 2018 international conference on computing, networking and communications (ICNC). IEEE. 10.1109/iccnc.2018.8390366
Dinh, H. T., Yun, J., Kim, D. M., Lee, K.H., & Kim, D. (2020). A home energy management system with renewable energy and energy storage utilizing main grid and electricity selling. IEEE Access, 8, 49436–49450. 10.1109/access.2020.2979189
Gajowniczek, K., & Zabkowski, T. (2014). Short term electricity forecasting using individual smart meter data. Procedia Computer Science, 35, 589–597. 10.1016/j.procs.2014.08.140
Golmohamadi, H., Keypour, R., BakJensen, B., & Pillai, J. R. (2019, May). Optimization of household energy consumption towards day ahead retail electricity price in home energy management systems. Sustainable Cities and Society, 47, 101468. 10.1016/j.scs.2019.101468
Hochreiter, S., & Schmidhuber, J. (1997). Long short term memory. Neural Computation, 9(8), 17351780. https://doi.org/10.1162/neco.1997.9.8.1735 10.1162/neco.1997.9.8.1735
Hossen, T., Nair, A. S., Noghanian, S., & Ranganathan, P. (2018, September). Optimal operation of smart home appliances using deep learning. In 2018 north american power symposium (NAPS). IEEE. 10.1109/naps.2018.8600674
International Energy Agency, I. (2019). Energy.
Isnen, M., Kurniawan, S., & GarciaPalacios, E. (2020, February). ASEM: An adaptive smart energy management testbed for shiftable loads optimisation in the smart home. Measurement, 152, 107285. 10.1016/j.measurement.2019.107285
Jaeger, H. (2001). The ”echo state”: Approach to analysing and training recurrent neural networks. GMDForschungszentrum Informationstechnik. https://books.google.com.br/books?id=-3NBHQAACAAJ
Khalid, A., Javaid, N., Guizani, M., Alhussein, M., Aurangzeb, K., & Ilahi, M. (2018). Towards dynamic coordination among home appliances using multiobjective energy optimization for demand side management in smart buildings. IEEE Access, 6, 19509–19529. 10.1109/access.2018.2791546
Khalid, M. U., & Javaid, N. (2018, April). An optimal scheduling of smart home appliances using heuristic techniques with real time coordination. In 2018 1st international conference on power, energy and smart grid (ICPESG). IEEE. 10.1109/ icpesg.2018.8384505
Khan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., & Khan, N. A. (2016, February). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable and Sustainable Energy Reviews, 54, 1311–1322. 10.1016/j.rser.2015.10.117
Kleiminger, W., Beckel, C., & Santini, S. (2015). Household occupancy monitoring using electricity meters. In Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing UbiComp 15. ACM Press. 10.1145/2750858.2807538
Kong, W., Dong, Z. Y., Hill, D. J., Luo, F., & Xu, Y. (2018, January). Short Term residential load forecasting based on resident behaviour learning. IEEE Transactions on Power Systems, 33(1), 1087–1088. 10.1109/tpwrs.2017.2688178
Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2019, January). Short Term residential load forecasting based on LSTM recurrent neural network. IEEE Transactions on Smart Grid, 10(1), 841–851. 10.1109/tsg.2017.2753802
Kumar, S., Hussain, L., Banarjee, S., & Reza, M. (2018, January). Energy load forecasting using deep learning approachLSTM and GRU in spark cluster. In 2018 fifth international conference on emerging applications of information technology (EAIT). IEEE. 10.1109/eait.2018.8470406
Leitao, J., Gil, P., Ribeiro, B., & Cardoso, A. (2020). A survey on home energy management. IEEE Access, 8, 5699–5722. 10.1109/access.2019.2963502
Liu, Y., Yuen, C., Yu, R., Zhang, Y., & Xie, S. (2016, May). Queuing Based energy consumption management for heterogeneous residential demands in smart grid. IEEE Transactions on Smart Grid, 7(3), 1650–1659. 10.1109/tsg.2015.2432571
Merdanoğlu, H., Yakıcı, E., Doğan, O. T., Duran, S., & Karatas, M. (2020, May). Finding optimal schedules in a home energy management system. Electric Power Systems Research, 182, 106229. 10.1016/j.epsr.2020.106229
Molla, T., Khan, B., Moges, B., Alhelou, H. H., Zamani, R., & Siano, P. (2019). Integrated optimization of smart home appliances with cost effective energy management system. CSEE Journal of Power and Energy Systems, 5(2), 249–258.
Monyei, C. G., Adewumi, A. O., Akinyele, D., Babatunde, O. M., Obolo, M. O., & Onunwor, J. C. (2018, May). A biased load manager home energy management system for low cost residential building low income occupants. Energy, 150, 822–838. 10.1016/j.energy.2018.03.016
Nebro, A., Durillo, J., GarciaNieto, J., Coello, C. C., Luna, F., & Alba, E. (2009, March). SMPSO: A new PSObased metaheuristic for multiobjective optimization. In 2009 IEEE symposium on computational intelligence in multicriteria decision making. IEEE. 10.1109/mcdm.2009.4938830
Oprea, S.V., Pîrjan, A., Căruțașu, G., Petroșanu, D.M., Bâra, A., Stănică, J.L., & Coculescu, C. (2018, May). Developing a mixed neural network approach to forecast the residential electricity consumption based on sensor recorded data. Sensors, 18(5), 1443. 10.3390/s18051443
ShafieKhah, M., & Siano, P. (2018, February). A stochastic home energy management system considering satisfaction cost and response fatigue. IEEE Transactions on Industrial Informatics, 14(2), 629–638. 10.1109/tii.2017.2728803
Shakeri, M., Shayestegan, M., Reza, S. S., Yahya, I., Bais, B., Akhtaruzzaman, M., … Amin, N. (2018, September). Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source. Renewable Energy, 125, 108–120. 10.1016/j.renene.2018.01.114
Shareef, H., Ahmed, M. S., Mohamed, A., & Hassan, E. A. (2018). Review on home energy management system considering demand responses, smart technologies, and intelligent controllers. IEEE Access, 6, 24498–24509. 10.1109/access.2018 .2831917
Shi, G., Liu, D., & Wei, Q. (2016, December). Energy consumption prediction of office buildings based on echo state networks. Neurocomputing, 216, 478–488. 10.1016/j.neucom.2016.08.004
Veras, J., Silva, I., Pinheiro, P., Rabêlo, R., Veloso, A., Borges, F., & Rodrigues, J. (2018, September). A multiobjective demand response optimization model for scheduling loads in a home energy management system. Sensors, 18(10), 3207. 10.3390/s18103207
While, L., Hingston, P., Barone, L., & Huband, S. (2006, February). A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation, 10(1), 29–38. https://doi.org/10.1109/tevc.2005.851275 10.1109/tevc.2005.851275
Yuce, B., Rezgui, Y., & Mourshed, M. (2016, January). ANN–GA smart appliance scheduling for optimised energy management in the domestic sector. Energy and Buildings, 111, 311–325. 10.1016/j.enbuild.2015.11.017
Zitzler, E., Laumanns, M., & Thiele, L. (2001). Spea2: Improving the strength pareto evolutionary algorithm. 10.3929/ETHZA004284029
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Allan Rivalles Souza Feitosa; Henrique Figuerôa Lacerda; Wellington Pinheiro dos Santos; Abel Guilhermino da Silva Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.