Prevalent nursing diagnosis of patients in palliative care: a data mining




Data mining; Palliative care; Nursing diagnosis.


Introduction: palliative care is patient-centered and includes approaches to symptom relief and physiological reduction and psychological distress associated with the disease. In this context, the nursing diagnosis (ND) establishes bases for the selection of nursing interventions to achieve results in this population, for which the nurse is responsible. Objective: to identify the prevalent NDs in palliative care patients, sociodemographic and clinical profile of hospitalized adult patients who received palliative care consultations in clinical and surgical units registered in electronic medical records. Method: retrospective observational study with secondary use of data. The study population consisted of all adults admitted to the clinical and surgical units of a university hospital between June 2014 and July 2019, totaling approximately 51,000 unique records. The sample comprised patients who received consultations in palliative care during hospitalization. Data analysis was performed using Structured Query Language (SQL). Results: 91 different nursing diagnoses were chosen for the study sample. Of these, three ND were prevalent: Risk of falls was present in the prescription of 1350 patients, Impaired tissue integrity in 1073 prescriptions and Acute pain in 1032. Conclusion: it is expected that the methodology adopted in this research supports the decision-making process of professionals in order to improve effectiveness in palliative care and optimize the patient safety process.


Brennan, P. F., & Bakken, S. (2015). Nursing Needs Big Data and Big Data Needs Nursing. Journal of Nursing Scholarship: An Official Publication of Sigma Theta Tau International Honor Society of Nursing, 47(5), 477–484.

Gaedke Nomura, A. T., de Abreu Almeida, M., Johnson, S., & Pruinelli, L. (2021). Pain Information Model and Its Potential for Predictive Analytics: Applicability of a Big Data Science Framework. Journal of Nursing Scholarship: An Official Publication of Sigma Theta Tau International Honor Society of Nursing, 53(3), 315–322.

Sistema AGHUse - Portal Hospital de Clínicas de Porto Alegre. (2020.). Retrieved December 14, 2021, from

NANDA INTERNATIONAL NURSING DIAGNOSES: definitions & classification. (2021). Thieme Medical Publishers.

Marco Antonio de Goes Victor, Melissa de Freitas Luzia, Isis Marques Severo, Miriam de Abreu Almeida, Marta Georgina Oliveira de Goes, & Amália de Fátima Lucena. (2017). Falls in Surgical Patients: Subsidies for Safe Nursing Care. Journal of Nursing UFPE / Revista de Enfermagem UFPE, 11(10), 4027–4035.

Marinho, G. S., Alves, G. A. de A., Oliveira, D. F. de, Góes, Â. C. F., & Martinez, B. P. (2017). Risco de quedas em pacientes hospitalizados. Revista Pesquisa em Fisioterapia, 7(1), 55–60.

Mello, B. S., Almeida, M. de A., Pruinelli, L., & Lucena, A. de F. (2019). Resultados de enfermagem para avaliação da dor de pacientes em cuidado paliativo. Revista Brasileira de Enfermagem, 72, 64–72.

Miranda, G. M., Rosa, L. M. da, Bertoncello, K. C. G., Mercês, N. N. A. das, Amante, L. N., & Alvarez, A. G. (2019). Sistema informatizado à decisão clínica em Enfermagem: Uma construção e validação na oncologia. Enferm. foco (Brasília), 103–108.

Nomura, A. T. G., Pruinelli, L., Barreto, L. N. M., Graeff, M. dos S., Swanson, E. A., Silveira, T., & Almeida, M. de A. (2021). Pain Management in Clinical Practice Research Using Electronic Health Records. Pain Management Nursing, 22(4), 446–454.

Nomura, A. T. G., Pruinelli, L., da Silva, M. B., Lucena, A. de F., & Almeida, M. de A. (2018). Quality of Electronic Nursing Records: The Impact of Educational Interventions During a Hospital Accreditation Process. Computers, Informatics, Nursing: CIN, 36(3), 127–132.

Nomura, A. T. G., Silva, M. B. da, & Almeida, M. de A. (2016). Quality of nursing documentation before and after the Hospital Accreditation in a university hospital. Revista Latino-Americana de Enfermagem, 24.

Plantier, M., Havet, N., Durand, T., Nicolas, C., Amaz, C., Biron, P., Philip, I., & Perrier, L. (2017). Does adoption of electronic health records improve the quality of care management in France? Results from the French e-SI (PREPS-SIPS) study. International Journal of Medical Informatics, 102, 156–165.

Pruinelli, L., Yadav, P., Hangsleben, A., Johnson, J., Dey, S., McCarty, M., Kumar, V., Delaney, C. W., Steinbach, M., Westra, B. L., & Simon, G. J. (2016). A Data Mining Approach to Determine Sepsis Guideline Impact on Inpatient Mortality and Complications. AMIA Summits on Translational Science Proceedings, 2016, 194–202.

Rabelo-Silva, E., Cavalcanti, A., Goulart, M., Lucena, A., Almeida, M., Linch, G., Silva, M., & Müller-Staub, M. (2016). Advanced Nursing Process Quality: Comparing International Classification for Nursing Practice (ICNP) with the NANDA-International (NANDA-I) and Nursing Interventions Classification (NIC). Journal of Clinical Nursing, 26.

Rubens, M., Ramamoorthy, V., Saxena, A., Das, S., Appunni, S., Rana, S., Puebla, B., Suarez, D. T., Khawand-Azoulai, M., Medina, S., & Viamonte-Ros, A. (2019). Palliative Care Consultation Trends Among Hospitalized Patients With Advanced Cancer in the United States, 2005 to 2014. The American Journal of Hospice & Palliative Care, 36(4), 294–301.

Sampaio, S., Motta, L., & Caldas, C. (2021). Dor e Internação Hospitalar em Cuidados Paliativos. Revista Brasileira de Cancerologia, 67, e-131180.

Silva, D. E. S. da, Pacheco, P. Q. C., & Souza, S. R. de. (2020). Palliative care and its relationship with the nursing diagnoses of NANDA-I and NIC taxonomies / Cuidados paliativos e sua relação com os diagnósticos de enfermagem das taxonomias NANDA-I e NIC. Revista de Pesquisa Cuidado é Fundamental Online, 12, 282–291.

Silva, J. dos S. (2015). Audit in health: A new paradigm in the quality of nursing care. Rev Enferm UFPI, 4(2), Article 2.

Westra, B. L., Christie, B., Johnson, S. G., Pruinelli, L., LaFlamme, A., Park, J. I., Sherman, S. G., Byrne, M. D., Ranallo, P., & Speedie, S. (2016). Expanding Interprofessional EHR Data in i2b2. AMIA Joint Summits on Translational Science Proceedings. AMIA Joint Summits on Translational Science, 2016, 260–268.

Westra, B. L., Johnson, S. G., Ali, S., Bavuso, K. M., Cruz, C. A., Collins, S., Furukawa, M., Hook, M. L., LaFlamme, A., Lytle, K., Pruinelli, L., Rajchel, T., Settergren, T. T., Westman, K. F., & Whittenburg, L. (2018). Validation and Refinement of a Pain Information Model from EHR Flowsheet Data. Applied Clinical Informatics, 9(1), 185–198.

Xavier, É. de C. L., Júnior, A. J. S. C., Carvalho, M. M. C. de, Lima, F. R., & Santana, M. E. de. (2019). Diagnósticos de enfermagem em cuidados paliativos oncológicos segundo diagrama de abordagem multidimensional. Enfermagem Em Foco, 10(3).



How to Cite

NOMURA, A. T. G. .; ALMEIDA, M. de A. .; PRUINELLI, L.; BÁO, A. C. P. .; GASPERINI, N. F. .; BARRETO, L. N. M. . Prevalent nursing diagnosis of patients in palliative care: a data mining. Research, Society and Development, [S. l.], v. 10, n. 17, p. e217101724725, 2021. DOI: 10.33448/rsd-v10i17.24725. Disponível em: Acesso em: 24 jan. 2022.



Health Sciences