Prevalent nursing diagnosis of patients in palliative care: a data mining

Authors

DOI:

https://doi.org/10.33448/rsd-v10i17.24725

Keywords:

Data mining; Palliative care; Nursing diagnosis.

Abstract

Introduction: palliative care is patient-centered and includes approaches to symptom relief and physiological reduction and psychological distress associated with the disease. In this context, the nursing diagnosis (ND) establishes bases for the selection of nursing interventions to achieve results in this population, for which the nurse is responsible. Objective: to identify the prevalent NDs in palliative care patients, sociodemographic and clinical profile of hospitalized adult patients who received palliative care consultations in clinical and surgical units registered in electronic medical records. Method: retrospective observational study with secondary use of data. The study population consisted of all adults admitted to the clinical and surgical units of a university hospital between June 2014 and July 2019, totaling approximately 51,000 unique records. The sample comprised patients who received consultations in palliative care during hospitalization. Data analysis was performed using Structured Query Language (SQL). Results: 91 different nursing diagnoses were chosen for the study sample. Of these, three ND were prevalent: Risk of falls was present in the prescription of 1350 patients, Impaired tissue integrity in 1073 prescriptions and Acute pain in 1032. Conclusion: it is expected that the methodology adopted in this research supports the decision-making process of professionals in order to improve effectiveness in palliative care and optimize the patient safety process.

References

Brennan, P. F., & Bakken, S. (2015). Nursing Needs Big Data and Big Data Needs Nursing. Journal of Nursing Scholarship: An Official Publication of Sigma Theta Tau International Honor Society of Nursing, 47(5), 477–484. https://doi.org/10.1111/jnu.12159

Gaedke Nomura, A. T., de Abreu Almeida, M., Johnson, S., & Pruinelli, L. (2021). Pain Information Model and Its Potential for Predictive Analytics: Applicability of a Big Data Science Framework. Journal of Nursing Scholarship: An Official Publication of Sigma Theta Tau International Honor Society of Nursing, 53(3), 315–322. https://doi.org/10.1111/jnu.12648

Sistema AGHUse - Portal Hospital de Clínicas de Porto Alegre. (2020.). Www.hcpa.edu.br. Retrieved December 14, 2021, from https://www.hcpa.edu.br/institucional/tecnologia-da-informacao-e-comunicacao/institucional-sistema-aghuse

NANDA INTERNATIONAL NURSING DIAGNOSES: definitions & classification. (2021). Thieme Medical Publishers.

Marco Antonio de Goes Victor, Melissa de Freitas Luzia, Isis Marques Severo, Miriam de Abreu Almeida, Marta Georgina Oliveira de Goes, & Amália de Fátima Lucena. (2017). Falls in Surgical Patients: Subsidies for Safe Nursing Care. Journal of Nursing UFPE / Revista de Enfermagem UFPE, 11(10), 4027–4035. https://doi.org/10.5205/reuol.10712-95194-3-SM.1110sup201704

Marinho, G. S., Alves, G. A. de A., Oliveira, D. F. de, Góes, Â. C. F., & Martinez, B. P. (2017). Risco de quedas em pacientes hospitalizados. Revista Pesquisa em Fisioterapia, 7(1), 55–60. https://doi.org/10.17267/2238-2704rpf.v7i1.1218

Mello, B. S., Almeida, M. de A., Pruinelli, L., & Lucena, A. de F. (2019). Resultados de enfermagem para avaliação da dor de pacientes em cuidado paliativo. Revista Brasileira de Enfermagem, 72, 64–72. https://doi.org/10.1590/0034-7167-2018-0307

Miranda, G. M., Rosa, L. M. da, Bertoncello, K. C. G., Mercês, N. N. A. das, Amante, L. N., & Alvarez, A. G. (2019). Sistema informatizado à decisão clínica em Enfermagem: Uma construção e validação na oncologia. Enferm. foco (Brasília), 103–108.

Nomura, A. T. G., Pruinelli, L., Barreto, L. N. M., Graeff, M. dos S., Swanson, E. A., Silveira, T., & Almeida, M. de A. (2021). Pain Management in Clinical Practice Research Using Electronic Health Records. Pain Management Nursing, 22(4), 446–454. https://doi.org/10.1016/j.pmn.2021.01.016

Nomura, A. T. G., Pruinelli, L., da Silva, M. B., Lucena, A. de F., & Almeida, M. de A. (2018). Quality of Electronic Nursing Records: The Impact of Educational Interventions During a Hospital Accreditation Process. Computers, Informatics, Nursing: CIN, 36(3), 127–132. https://doi.org/10.1097/CIN.0000000000000390

Nomura, A. T. G., Silva, M. B. da, & Almeida, M. de A. (2016). Quality of nursing documentation before and after the Hospital Accreditation in a university hospital. Revista Latino-Americana de Enfermagem, 24. https://doi.org/10.1590/1518-8345.0686.2813

Plantier, M., Havet, N., Durand, T., Nicolas, C., Amaz, C., Biron, P., Philip, I., & Perrier, L. (2017). Does adoption of electronic health records improve the quality of care management in France? Results from the French e-SI (PREPS-SIPS) study. International Journal of Medical Informatics, 102, 156–165. https://doi.org/10.1016/j.ijmedinf.2017.04.002

Pruinelli, L., Yadav, P., Hangsleben, A., Johnson, J., Dey, S., McCarty, M., Kumar, V., Delaney, C. W., Steinbach, M., Westra, B. L., & Simon, G. J. (2016). A Data Mining Approach to Determine Sepsis Guideline Impact on Inpatient Mortality and Complications. AMIA Summits on Translational Science Proceedings, 2016, 194–202.

Rabelo-Silva, E., Cavalcanti, A., Goulart, M., Lucena, A., Almeida, M., Linch, G., Silva, M., & Müller-Staub, M. (2016). Advanced Nursing Process Quality: Comparing International Classification for Nursing Practice (ICNP) with the NANDA-International (NANDA-I) and Nursing Interventions Classification (NIC). Journal of Clinical Nursing, 26. https://doi.org/10.1111/jocn.13387

Rubens, M., Ramamoorthy, V., Saxena, A., Das, S., Appunni, S., Rana, S., Puebla, B., Suarez, D. T., Khawand-Azoulai, M., Medina, S., & Viamonte-Ros, A. (2019). Palliative Care Consultation Trends Among Hospitalized Patients With Advanced Cancer in the United States, 2005 to 2014. The American Journal of Hospice & Palliative Care, 36(4), 294–301. https://doi.org/10.1177/1049909118809975

Sampaio, S., Motta, L., & Caldas, C. (2021). Dor e Internação Hospitalar em Cuidados Paliativos. Revista Brasileira de Cancerologia, 67, e-131180. https://doi.org/10.32635/2176-9745.RBC.2021v67n3.1180

Silva, D. E. S. da, Pacheco, P. Q. C., & Souza, S. R. de. (2020). Palliative care and its relationship with the nursing diagnoses of NANDA-I and NIC taxonomies / Cuidados paliativos e sua relação com os diagnósticos de enfermagem das taxonomias NANDA-I e NIC. Revista de Pesquisa Cuidado é Fundamental Online, 12, 282–291. https://doi.org/10.9789/2175-5361.rpcfo.v12.8548

Silva, J. dos S. (2015). Audit in health: A new paradigm in the quality of nursing care. Rev Enferm UFPI, 4(2), Article 2. https://periodicos.ufpi.br/index.php/reufpi/article/view/273

Westra, B. L., Christie, B., Johnson, S. G., Pruinelli, L., LaFlamme, A., Park, J. I., Sherman, S. G., Byrne, M. D., Ranallo, P., & Speedie, S. (2016). Expanding Interprofessional EHR Data in i2b2. AMIA Joint Summits on Translational Science Proceedings. AMIA Joint Summits on Translational Science, 2016, 260–268.

Westra, B. L., Johnson, S. G., Ali, S., Bavuso, K. M., Cruz, C. A., Collins, S., Furukawa, M., Hook, M. L., LaFlamme, A., Lytle, K., Pruinelli, L., Rajchel, T., Settergren, T. T., Westman, K. F., & Whittenburg, L. (2018). Validation and Refinement of a Pain Information Model from EHR Flowsheet Data. Applied Clinical Informatics, 9(1), 185–198. https://doi.org/10.1055/s-0038-1636508

Xavier, É. de C. L., Júnior, A. J. S. C., Carvalho, M. M. C. de, Lima, F. R., & Santana, M. E. de. (2019). Diagnósticos de enfermagem em cuidados paliativos oncológicos segundo diagrama de abordagem multidimensional. Enfermagem Em Foco, 10(3). https://doi.org/10.21675/2357-707X.2019.v10.n3.2109

Published

26/12/2021

How to Cite

NOMURA, A. T. G. .; ALMEIDA, M. de A. .; PRUINELLI, L.; BÁO, A. C. P. .; GASPERINI, N. F. .; BARRETO, L. N. M. . Prevalent nursing diagnosis of patients in palliative care: a data mining. Research, Society and Development, [S. l.], v. 10, n. 17, p. e217101724725, 2021. DOI: 10.33448/rsd-v10i17.24725. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24725. Acesso em: 16 nov. 2024.

Issue

Section

Health Sciences