Synthesis, characterization, and photocatalytic activity of ZnO nanostructures

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.25373

Keywords:

Nanostructure; ZnO; Photodegradation; Rhodamine B.

Abstract

This study investigated the synthesis, characterization of ZnO nanostructures using different precipitating agents in the photodegradation of rhodamine B (Rh B) using scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared (FTIR) and UV/Vis spectroscopy and zeta potential measurements. The results indicated the dependence of morphology on calcination temperature and the precipitating agent. The colloidal stability of these nanomaterials is affected with the morphology changed. The photocatalytic results showed that ZnO nanostructures synthesized with NH4OH (98.98%) were more efficient in the degradation of Rh B than ZnO nanostructures synthesized with NaOH (62.68%). This is related to ZnO (NH4OH) nanoparticles should present a higher density of electronic defects than ZnO (NaOH), producing energy levels between the band gaps. These results are potentially associated with a combination of optical and geometric factors that create other paths for the generation of electron-hole pairs in the precipitated ZnO nanocatalyst with different alkaline solutions.

References

Ahmad, S., Abbas, H., Khan, M. B., Nagal, V., Hafiz, A. K., & Khan, Z. H. (2021). ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere. Solar Energy, 216, 164-170.

Alvi, M. A., Al-Ghamdi, A. A., & Shakeerakhtar, M. (2017). Synthesis of ZnO nanostructures via low temperature solution process for photocatalytic degradation of rhodamine B dye. Materials Letter, 204, 12-15.

Arya, S. K., Saha. S., Ramirez-Vick, J. R., Gupta, V., Bhansali, S., & Singh, S. P. (2012). Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Analytica Chimicta Acta, 737, 1-21.

Awan, F., Islam, M. S., Ma, Y., Yang, C., Shi, Z., Berry, R. M., & Tam, K. C. (2018). Cellulose Nanocrystal–ZnO Nanohybrids for Controlling Photocatalytic Activity and UV Protection in Cosmetic Formulation. ACS Omega, 3(10), 12403–12411.

Cavalcante, L.A., Aum, Y. K. P. G., Rebelo, Q.H.F., & Pocrifka, L. A. (2019). Evaluation of ZnO synthesized by pechini method in the degradation of blue methylene. Brazilian Journal of Development, 5(5), 3619-3626.

Cao, M., Wang, F., Zhu, J., Zhang, X., Qin, Y., & Wang, L. (2017). Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties. Materials Letters, 192, 1-4.

Giraldi, T. R., Swerts, J. P., Vicente, M. A., De Mendonça, V. R., Paris, E. C., & Ribeiro, C. (2016). Utilização de partículas de ZnO: Mn para a degradação do azul de metileno por processo de fotocatálise. Cerâmica, 62, 345-350.

Gomez-Solís, C., Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Díaz Torres, L. A., Zarazua-Morin, M. E., & Lee, S. W. (2015). Rapid synthesis of ZnO nano-corncobs from Nital solution and its application in the photodegradation of methyl orange. Journal of Photochemistry and Photobiology A, 298, 49–54.

Gu, X., Edvinsson, T., Zhu, J. (2020). ZnO nanomaterials: strategies for improvement of photocatalytic and photoelectrochemical activities. In: Wang X, Anpo M, & Fu X (Eds.), Current Developments in Photocatalysis and Photocatalytic Materials (p. 231-244). Oxford: Elsevier.

Jeong, W. J., Kim, S. K., & Park, G. C. (2006). Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films, 506-507, 180–183.

Kouhail, M., Elberouhi, K., Elahmadi, Z., Benayada, A., & Gmouth, S. A. (2020). Comparative study between TiO2 and ZnO photocatalysis: Photocatalytic degradation of textile dye. IOP Conference Series: Materials Science and Engineering, 827, 012009.

Kumar, S., Dhiman, A., Sudhagar, P., & Krishnan, V. (2018). ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Applied Surface Science, 447, 802–815.

Kuo, C. L., Wang, C. L., Ko, H. H., Hwang, W. S., Chang, K., Li, W. L., & Wang, M. C. (2010). Synthesis of zinc oxide nanocrystalline powders for cosmetic applications. Ceramics International, 36(2), 693–698.

Lanje, A. S., Sharma, S.J., Ningthoujam, R.S., Ahn, J. S., & Pode, R. B. (2013). Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Advanced Powder Technology, 24(1), 331–335.

Liu, F. T., Gao, S. F., Pei, S. K., Tseng, S. C., & Liu, C. H. J. (2009). ZnO nanorod gas sensor for NO2 detection. Journal of the Taiwan Institute of Chemical Engineers, 40(5), 528–532.

Maia, G. A. R., Larsson, L. F. G., Viomar, A., Maia, E. C. R., De Santana, H., & Rodrigues, P. R. P. (2016). Aperfeiçoamento da produção de partículas de óxido de zinco para aplicação em células solares. Cerâmica, 62(361), 91-97.

Monteiro-Muñoz, M., Ramos-Ibarra, J. E., Rodrigues-Paez, J. E., Teodoro, M. D., Marques, G. E., Sanabria, A. R., & Coaquira, J. A. H. (2018). Role of defects on the enhancement of the photocatalytic response of ZnO nanostructures. Applied Surface Science, 448, 646–654.

Noreen, S., Khalid, U., Ibrahim, S. M., Javed, T., Ghani, A., Naz, S., & Iqbal, M. (2020). ZnO, MgO and FeO adsorption efficiencies for direct sky Blue dye: equilibrium, kinetics and thermodynamics studies. Journal of Materials Research and Technology, 9(3), 5881-5893.

Rusdi, R., Rahman, A. A., Mohamed, N. S., Kamarudin, N., & Kamarulzaman, N. (2011). Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures. Powder Technology, 210(1), 18–22.

Salehi-Babarsad, F., Derikvand, E., Razaz, M., Yousefi, R., & Shirmardi, A. (2020). Heavy metal removal by using ZnO/organic and ZnO/inorganic nanocomposite heterostructures. International Journal of Analytical Chemistry, 100(6), 702-719.

Shetti, N. P., Bukkitgar, S. D., Reddy, K. R., Reddy, C. V., & Aminabhavi, T. M. (2019). ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors and Bioelectronics, 141(15), 111417.

Shi, L., Naik, A. J. T., Goodall, J. B. M., Tighe, C., Gruar, R., Binions, R., & Darr, J. (2013). Highly Sensitive ZnO Nanorod- and Nanoprism-Based NO2 Gas Sensors: Size and Shape Control Using a Continuous Hydrothermal Pilot Plant. Langmuir, 29(33), 10603–10609.

Tian, C., Zhang, Q., Wu, A., Jiang, M., Liang, Z., Jiang, B., & Fu, H. (2012). Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chemical Communications, 48(23), 2858-2860.

Walia, S., Weber, R., Balendhran, S., Yao, D., Abrahamson, J. T., Zhuiykov, S., & Kalantar-Zadeh, K. (2012). ZnO based thermopower wave sources. Chemical Communications, 48(60), 7462-7464.

Wang, L., Kang, Y., Liu, X., Zhang, S., Huang, W., & Wang, S. (2012). ZnO nanorod gas sensor for ethanol detection. Sensors and Actuators B: Chemical, 162, 237-243.

Wang, J., Yang, J., Li, X., Feng, B., Wei, B., Wang, D., & Song, H. (2015). Effect of surfactant on the morphology of ZnO nanopowders and their application for photodegradation of rhodamine. Powder Technology, 286, 269 -275.

Willander, M., Yang, L. L., Wadeasa, A., Ali, S. U., Asif, M. H., Zhao, Q. X., & Nur, O. (2019). Zinc oxidenanowires: controlled low temperature growth and some electrochemical and optical nano-devices. Journal of Materials Chemistry, 19(7), 1006–1018.

Zeng, P., Yu, H., Chen, M., Xiao, W., Li, Y., Liu, H., & Wang, X. (2020). Flower-like ZnO modified with BiOI nanoparticles as adsorption/catalytic bifunctional hosts for lithium-sulfur batteries. Journal of Energy Chemistry, 51, 21-29.

Downloads

Published

17/01/2022

How to Cite

SILVEIRA, M. L. D. C. .; SILVA, N. R. da; PADOVINI, D. S. S.; KINOSHITA, A. .; PONTES, F. M. L. .; MAGDALENA, A. G. . Synthesis, characterization, and photocatalytic activity of ZnO nanostructures. Research, Society and Development, [S. l.], v. 11, n. 2, p. e3811225373, 2022. DOI: 10.33448/rsd-v11i2.25373. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25373. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences