Chemical composition, actividad larvicide, insecticide and repellent of essential oil Aedes aegypti
DOI:
https://doi.org/10.33448/rsd-v11i2.25711Keywords:
Aedes aegypti; Insecticide; Essential oils; Larvicidal; Repellent.Abstract
Dengue is transmitted by the mosquito Aedes aegypti, which is controlled by insecticides and repellents. The plant-based essential oils are used as excellent repellents. Therefore, the present review is essential for understanding the efficacy of essential oils against mosquitoes. The articles related to essential oils were searched from 2014 to 2022 in Pubmed, Science Direct, LILACS, Scielo, and Google Scholar using the following keywords-essential oil, Aedes aegypti, and repellents. A total of 280 plants were extracted for EOs from 33 families. The most plants belong to Lamiaceae (45.4%), followed by Myrtaceae (38.3%) and Rutaceae (28.4%). The metabolites in EOs with the maximum repellent/larvicidal activity include β - caryophyllene, α - pinene, 1,8 - cineol, linalool, and eugenol, the lethal concentrations ranged from 40 to 120 ppm. These results support the view that essential oils are promising in the formulation of repellents, larvicides, insecticides, and pesticides.
References
Affonso, R. S., Lima, J. A., Lessa, B. M., Caetano, J. V., Obara, M. T., Nóbrega, A. B., Nepovimova, E. Musilek, K., Kuca, K., Slana, G. B. C. A., & França, T. C. (2018). Quantification through TLC‐densitometric analysis, repellency and anticholinesterase activity of the homemade extract of Indian cloves. Biomedical Chromatography, 32 (2), 1-8. https://doi.org/10.1002/bmc.4096
Albarici, T. R., Vieira, P. C., Fernandes, J. B., & Silva, M. F. D. G. F. (2010). Coumarin and alkaloids of Rauia resinosa (Rutaceae); Cumarinas e alcaloides de Rauia resinosa (Rutaceae). Quimica Nova (Online), 33 (10), 2130-2134. https://doi.org/10.1590/S0100-40422010001000024
Albuquerque, B. W. (1976). Revisão taxonômica das Rutaceae do Estado do Amazonas. Acta amazônica, 6, 5-67. https://doi.org/10.1590/1809-43921976063s005
Ali, A., Tabanca, N., Demirci, B., Blythe, E. K., Ali, Z., Baser, K. H. C., Khan, & Ikhlas A. (2014) Chemical Composition and Biological Activity of Four Salvia Essential Oils and Individual Compounds against Two Species of Mosquitoes. Journal Agricuture Food Chemistre, 63 (2), 447–456. https://doi.org/10.1021/jf504976f.
Ali, A., Tabanca, N., Ozek, G., Ozek, T., Aytac, Z., Bernier, U. R., Agramonte, N. M., Husnu, B. L. K & Khan, I. A. (2015). Essential oils of Echinophora lamondiana (Apiales: Umbelliferae): A relationship between chemical profile and biting deterrence and larvicidal activity against mosquitoes (Diptera: Culicidae). Journal of medical entomology, 52 (1), 93-100. https://doi.org/10.1093/jme/tju014
Almadiy, A. A. (2020). Chemical composition, insecticidal and biochemical effects of two plant oils and their major fractions against Aedes aegypti, the common vector of dengue fever. Heliyon, 6 (9), 1-9. https://doi.org/10.1016/j.heliyon.2020.e04915
Almeida, A. O. (2005). Dissertação (Mestrado) – Dissertação de Mestrado em Gerenciamento e Tecnologias Ambientais no Processo Produtivo. UFBA.
Araujo, A. F. D. O., Ribeiro-Paes, J. T., Deus, J. T. D., Cavalcanti, S. C. D. H., Nunes, R. D. S., Alves, P. B., & Macoris, M. D. L. D. G. (2016). Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Memórias do Instituto Oswaldo Cruz, 111, 443-449. https://doi.org/10.1590/0074-02760160075
Auysawasdi, N., Chuntranuluck, S., Phasomkusolsil, S., & Keeratinijakal, V. (2016). Improving the effectiveness of three essential oils against Aedes aegypti (Linn.) and Anopheles dirus (Peyton and Harrison). Parasitology research, 115 (1), 99-106. https://doi.org/10.1007/s00436-015-4725-3
Bailão, E. F. L. C., Pereira, D. G., Romano, C. A., Santana Paz, A. T., Silva, T. M., Paula, J. R., Gomes, C. M., & Borges, L. L. (2022). Larvicidal effect of the Citrus limettioides peel essential oil on Aedes aegypti. South African Journal of Botany, 144, 257-260. https://doi.org/10.1016/j.sajb.2021.09.013
Bemelli, G., Rajeswary, M., & Govindarajan, M. (2018). Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agentes. Environ Sci Pollut Res., 25 (11), 10218-10227. https://doi.org/0.1007/s11356-016-8146-3
Benelli, G., Rajeswary, M., & Govindarajan, M. (2016). Rumo aos impedimentos de oviposição verde? Efetividade do óleo essencial de Syzygium lanceolatum (Myrtaceae) contra seis mosquitos vetores e impacto em quatro agentes de controle biológico aquático. Environmental Science and Pollution Research, 1, 1-8. https://doi.org/10.1007/s11356-016-8146-3.
Benelli, G., Rajeswary, M., Vijayan, P., Senthilmurugan, S., Alharbi, N.S., Kadaikunnan, S., Khaled, J. M., & Govindarajan, M. (2018). Óleo essencial de Boswellia ovalifoliolata (Burseraceae) como larvicida ecologicamente correto? Toxicidade contra seis mosquitos vetores de importância para a saúde pública, peixes mosquitos não visados, nadadores de costas e insetos aquáticos. Ambiente. Environmental Science and Pollution Research, 25 (11), 10264-10271. https://doi.org/10.1007/s11356-017-8820-0
Blythe, E. K., Tabanca, N., Demirci, B., Tsikolia, M., Bloomquist, J. R., & Bernier, U. R. (2016). Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti. Nat Prod Commun. 11 (11), 1713-1716.
Borrero-Landazabal, M. A., Duque, J. E., & Mendez-Sanchez, S. C. (2020). Model to design insecticides against Aedes aegypti using in silico and in vivo analysis of different pharmacological targets. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 229, 1-9. https://doi.org/ 10.1016/j.cbpc.2019.108664
Carréra, J. C., Ilkiu-Borges, F., Rodrigues, S. T., Rodrigues, A. D. C. (2015). Espécies de Lamiaceae (Labiatae) mais utilizadas na medicina popular do estado do Pará. 66º Congresso Nacional de Botânica.
Carroll, J. F., Demirci, B., Kramer, M., Bernier, U. R., Agramonte, N. M., Baser, K. H. C., & Tabanca, N. (2017). Repellency of the Origanum onites L. essential oil and constituents to the lone star tick and yellow fever mosquito. Natural product research, 31 (18), 2192-2197. https://doi.org/10.1080/14786419.2017.1280485
Costa, A. A., Gonzalez, P. V., Harburguer, L. V., & Masuh, H. M. (2018). Effects of temephos, permethrin, and Eucalyptus nitens essential oil on survival and swimming behavior of Aedes aegypti and Anopheles pseudopunctipennis (Diptera: Culicidae) larvae. Journal of medical entomology, 55 (5), 1098-1104. https://doi.org/ 10.1093/jme/tjy086
Costa, A. A., Naspi, C. V., Lucia, A., & Masuh, H. M. (2017). Repellent and larvicidal activity of the essential oil from Eucalyptus nitens against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of medical Entomology, 54(3), 670-676. https://doi.org/10.1093/jme/tjw222
Demirci, B., Yusufoglu, H. S., Tabanca, N., Temel, H. E., Bernier, U. R., Agramonte, N. M., Alqasoumi, S. I., Al-Rehaily, A. J., Baser, K. H. C., & Demirci, F. (2017). Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial, insect-repellent and anticholinesterase activities. Saudi Pharmaceutical Journal, 25(5), 703-708. https://doi.org/10.1016/j.jsps.2016.10.009
Dethier, V. G. (1956). Repellents. Annu. Rev. Entomol.
Dewick, P. M. (2009). Medicinal Natural Products: A Biosynthetic Approach. Wiley.
Dias, C. N., Alves, L. P. L., Rodrigues, K. A. F., Brito, M. C. A., Rosa, C. S., Amaral, F. M. M., Monteiro, O. S., Andrade, E. H. A., Maia, J. G. S., & Moraes, D. F. C. (2015). Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae). Evidence-Based Complementary and Alternative Medicine. 2005, 1-8. http://dx.doi.org/10.1155/2015/490765
Drewes, S. E., Mudau, K. E., Van Vuuren, S. F., & Viljoen, A. M. (2006). Antimicrobial monomeric and dimeric diterpenes from the leaves of Helichrysum tenax var tenax. Phytochemistry, 67 (7), 716-722. https://doi.org/10.1016/j.phytochem.2005.12.015
Dudareva, N., Pichersky, E., & Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant physiology, 135 (4), 1893-1902. https://doi.org/10.1104/pp.104.049981
Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research, 21(4), 308-323. https://doi.org/10.1002/ptr.2072
Figuereido, A. C., Barroso, J. G., & Pedro, L. G. (2007) Potencialidades e aplicações das Plantas aromáticas e Medicinais. ULisboa.
Flora do Brasil, Rio de Janeiro (2020). http://floradobrasil.jbrj.gov.br
Galvão, J. G., Cerpe, P., Santos, D. A., Gonsalves, J. K., Santos, A. J., Nunes, R. K., Lira, A. A., Alves, P. B., Corte, R. L., Branco, A. F., Silva, G. F., Cavalcanti, S. C., & Nunes, R. S. (2019). Lippia gracilis essential oil in β‐cyclodextrin inclusion complexes: an environmentally safe formulation to control Aedes aegypti larvae. Pest management science, 75 (2), 452-459. https://doi.org/10.1002/ps.5138
Giulietti, A. M., Harley, R. M., DE Queiroz, L. P., Wanderley, M. DAS G. L., Den Berg, C. V. (2005). Biodiversidade e conservação das plantas no Brasil. Megadiversidade, 1 (1), 53-61.
Govindarajan, M., & Benelli, G. (2016). α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitology research, 115 (7), 2771-2778. https://doi.org/10.1007/s00436-016-5025-2
Govindarajan, M., Kadaikunnan, S., Alharbi, N. S., & Benelli, G. (2016). Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environmental Science and Pollution Research, 23 (22), 23228-23238. https://doi.org/10.1007/s11356-016-7568-2
Govindarajan, M., Rajeswary, M., Arivoli, S., & Tennyson, S., (2016). Benelli, B. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?. Parasitol Res. 115 (5), 1807–1816. https://doi.org/10.1007/s00436-016-4920-x
Govindarajan, M., Rajeswary, M., Hoti, S. L., Bhattacharyya, A., & Benelli, G. (2016). Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitology research, 115 (2), 807-815. https://doi.org/10.1007/s00436-015-4809-0
Govindarajan, M., Rajeswary, M., Senthilmurugan, S., Vijayan, P., Alharbi, N. S., Kadaikunnan, S., Khaled, M., & Benelli, G. (2018). Larvicidal activity of the essential oil from Amomum subulatum Roxb.(Zingiberaceae) against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae), and non-target impact on four mosquito natural enemies. Physiological and Molecular Plant Pathology, 101, 219-224. https://doi.org/10.1016/j.pmpp.2017.01.003
Harikarnpakdee, S., & Chuchote, C. (2018). Oviposition Deterrent Efficacy and Characteristics of a Botanical Natural Product, Ocimum gratissimum (L.) Oil-Alginate Beads, against Aedes aegypti (L.). The Scientific World Journal, 2018, 1-9. https://doi.org/10.1155/2018/3127214
Huang, H. T., Lin, C. C., Kuo, T. C., Chen, S. J., & Huang, R. N. (2019). Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta, 250 (1), 59-68. https://doi.org/10.1007/s00425-019-03147-w
Huang, H. T., Lin, C. C., Kuo, T. C., Chen, S. J., & Huang, R. N. (2019). Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta, 250 (1), 59-68. https://doi.org/10.1007/s00425-019-03147-w
Huang, Y., Lin, M., Jia, M., Hu, J., & Zhu, L. (2020). Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. Pest management science, 76 (2), 534-542. https://doi.org/10.1002/ps.5542.
Hung, N. H., Satyal, P., Hieu, H. V., Chuong, N. T. H., Dai, D. N., Huong, L. T., Thai, T. A., & Setzer, W. N. (2019). Mosquito larvicidal activity of the essential oils of Erechtites species growing wild in Vietnam. Insects, 10 (2), 47. https://doi.org/ 10.3390/insetos10020047
Intirach, J., Junkum, A., Lumjuan, N., Chaithong, U., Jitpakdi, A., Riyong, D., Wannasan, U., Champakaew, D., Muangmoon, R., Chansang, U., & Pitasawat, B. (2016). Antimosquito property of Petroselinum crispum (Umbellifereae) against the pyrethroid resistant and susceptible strains of Aedes aegypti (Diptera: Culicidae). Environmental Science and Pollution Research, 23 (23), 23994-24008. https://doi.org/10.1007/s11356-016-7651-8
Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol., 51, 45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146
Krishnamoorthy, S., Chandrasekaran, M., RAJ, G. A., Jayaraman, M., & Venkatesal, V. (2015). Identification of chemical constituents and larvicidal activity of essential oil from Murraya exotica L. (Rutaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 114 (5), 1838-1845. https://doi.org/10.1007/s00436-015-4370-x.
Latyki, B. L. (2017). Trabalho de Conclusão de Curso (TCC). UFTPA.
Lima, D. F., Caddah, M. K., & Goldenberg, R. (2015). A família Myrtaceae na Ilha do Mel, Paranaguá, Estado do Paraná, Brasil. Hoehnea, 42 (3), 497-519. https://doi.org/10.1590/2236-8906-68/2014
Lima, R. K., & Cardoso, M. G. (2007). Família Lamiaceae: Importantes Óleos Essenciais com Ação Biológica e Antioxidante. Revista Fitos, 3 (3), 14-24.
Lorenzi, H., & Matos, F. J. A. (2002). Plantas Medicinais no Brasil. Instituto Plantarum.
Lorenzi, H., & Souza, H. M. (2001). Plantas Ornamentais no Brasil. Instituto Plantarum.
Lorenzi, H., Bacher, L., Lacerda, M., & Sartori, S. (2006). Frutas Brasileiras e Exóticas Cultivadas. Instituto Plantarum.
Lucia, A., Toloza, A. C., Fanucce, M., Fernández-Peña, L., Ortega, F., Rubio, R. G., Coviella, C., & Guzmán, E. (2020). Nanoemulsions based on thymol-eugenol mixtures: characterization, stability and larvicidal activity against Aedes aegypti. Bulletin of Insectology, 73 (1), 153-160.
Melo, M. D. F. F., & Zickel, C. S. (2004). Os gêneros Zanthoxylum L. e Esenbeckia Kunth (Rutaceae) no Estado de Pernambuco, Brasil. Acta Botanica Brasilica, 18, 73-90. https://doi.org/10.1590/S0102-33062004000100007
Morais, L. A. S., & Marinho-Prado, J. S. (2016). Defensivos agrícolas naturais: Uso e perspectivas. Embrapa.
Morais, L., Conceição, G., & Nascimento, J. (2014). Família Myrtaceae: Análise morfológica e distribuição geográfica de uma coleção botânica. Agrarian Academy, 1 (01), 318-346. https://doi.org/10.18677/Agrarian_Academy_2014_018
Morales, R. M. C., Otero, A. L. C., Sanchez, S. C. M., Silva, M. A. N., Stashenko, E. E., & Duque, J. E. (2019). Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 221, 29-37. https://doi.org/10.1016/j.cbpc.2019.03.006
Muturi, E. J., Doll, K., Ramirez, J. L., & Rooney, A. P. (2019). Bioactivity of Wild Carrot (Daucus carota, Apiaceae) Essential Oil Against Mosquito Larvae. Journal of Medical Entomology, 56, 784–789. https://doi.org/10.1093/jme/tjy226
Muturi, E. J., Ramirez, J. L., Doll, K. M., & Bowman, M. J. (2017). Combined toxicity of three essential oils against Aedes aegypti (Diptera: Culicidae) larvae. Journal of Medical Entomology, 54 (6), 1684-1691. https://doi.org/10.1093/jme/tjx168
Nascimento, A. M. D., Maia, T. D. S., Soares, T. E. S., Menezes, L. R. A., Scher, R., Costa, E. V., Cavalcanti, S. C. H., & La Corte, R. (2017). Repellency and larvicidal activity of essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and their individual compounds against Aedes aegypti Linnaeus. Neotropical entomology, 46 (2), 223-230. https://doi.org/10.1007/s13744-016-0457-z
Nerio, L. S., Olivero-Verbel, J., & Stashenko, E. (2010). Repellent activity of essential oils: a review. Bioresource technology, 101(1), 372-378. https://doi.org/10.1016/j.biortech.2009.07.048
Oliveira, A. D. N., Oliveira, D. T., Angelica, R. S., Andrade, E. H. D. A., da Silva, J. K. D. R., Rocha Filho, G. N. D., Coral, N., Pires, L. H. O., Luque, R., & Nascimento, L. A. S. (2020). Efficient esterification of eugenol using a microwave-activated waste kaolin. Reaction Kinetics, Mechanisms and Catalysis, 130, 633-653. https://doi.org/10.1007/s11144-020-01797-6
Ootani, M. A. (2010). Dissertação de Mestrado. UFT.
Özek, G., Tabanca, N., Radwan, M. M., Shatar, S., Altantsetseg, A., Baatar, D., Baser, K. H. C., Becnel, J. J., & Özek, T. (2016). Preparative capillary GC for characterization of five Dracocephalum essential oils from Mongolia, and their mosquito larvicidal activity. Natural product communications, 11 (10), 1541-1544.
Pandiyan, G. N., Mathew, N., & Munusamy, S. (2019). Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. Ecotoxicology and environmental safety, 174, 549-556. https://doi.org/10.1016/j.ecoenv.2019.03.019
Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial crops and products, 76, 174-187. https://doi.org/10.1016/j.indcrop.2015.06.050
Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current opinion in plant biology, 5 (3), 237-243. https://doi.org/10.1016/S1369-5266(02)00251-0
Pinto, C. C. C., de Menezes, J. E. S., Siqueira, S. M. C., Melo, D. S., Feitosa, C. R., & Santos, H. S. (2016). Chemical Composition and larvicidal activity against Aedes aegypti of essential oils from Croton jacobinenesis Baill. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 15 (2), 122-127.
Pirani, J. R., Wanderley, M. G. L., Shepherd, G. J., Giulietti, A. M., Melhem, T. S., Bittrich, V., & Kameyama, C. (2002). Flora Fanerogâmica do Estado de São Paulo. Instituto de Botânica.
Raj, G. A., Chandrasekaran, M., Krishnamoorthy, S., Jayaraman, M., & Venkatesalu, V. (2015). Phytochemical profile and larvicidal properties of seed essential oil from Nigella sativa L. (Ranunculaceae), against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res, 114 (9), 3385-3391. https://doi.org/10.1007/s00436-015-4563-3
Raj, G. A., Chandrasekaran, M., Venkatesalu, V., & Jegan, S. (2017). Phytochemical composition and larvicidal activity of essential oil from the leaves of pleiospermium alatum (wall. Ex wt. & arn) swingle against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: culicidae). 1 (N), 1-4.
Ramos, R. S., Rodrigues, A. B. L., Farias, A. L. F., Simões, R. C., Pinheiro, M. T., Ferreira, R. M. D. A., Barbosa, L. M. C., Souto, R. N. P., Fernandes, J. B., Santos, L. S. & Almeida, S. S. M. D. S. (2017). Chemical composition and in vitro antioxidant, cytotoxic, antimicrobial, and larvicidal activities of the essential oil of Mentha piperita L.(Lamiaceae). The Scientific World Journal, 2017, 1-8. https://doi.org/10.1155/2017/4927214
Santana, A. I., Vila, R., Cañigueral, S., & Gupta, M. P. (2016). Chemical composition and biological activity of essential oils from different species of Piper from Panama. Planta medica, 82 (11/12), 986-991. https://doi.org/10.1055/s-0042-108060
Santos, A. J., Pina, L. T., Galvão, J. G., Trindade, G. G., Nunes, R. K., Santos, J. S., Santos, C. P., Gonsalves, J. K. M. C. Lira, A. A. M., Cavalcanti, S. C. H. Santos, R. L. C. Sarmento, V. H. V. & Nunes, R. S. (2020). Clay/PVP nanocomposites enriched with Syzygium aromaticum essential oil as a safe formulation against Aedes aegypti larvae. Applied Clay Science, 185, 1-7. https://doi.org/10.1016/j.clay.2019.105394
Sarma, R., Adhikari, K., Mahanta, S., & Khanikor, B. (2019). Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Scientific reports, 9 (1), 1-12. https://doi.org/10.1038/s41598-019-45908-3
Satyal, P., Hieu, H. V., Chuong, N. T. H., Hung, N. H., Sinh, L. H., Tai, T. A., Hien, V. T., & Setzer, W. N. (2019). Chemical composition, Aedes mosquito larvicidal activity, and repellent activity against Triatoma rubrofasciata of Severinia monophylla leaf essential oil. Parasitology research, 118 (3), 733-742. https://doi.org/10.1007/s00436-019-06212-1
Scalvenzi, L., Radice, M., Toma, L., Severini, F., Boccolini, D., Bella, A., Guerrini, A., Tacchini, M., Sacchetti, G., Chiurato, M., Romi, R., & Di Luca, M. (2019). Larvicidal activity of Ocimum campechianum, Ocotea quixos and Piper aduncum essential oils against Aedes aegypti. Parasite, 26 (23), 1-8. https://doi.org/10.1051/parasite/2019024
Silva, I. M., Martins, G. F., Melo, C. R., Santana, A. S., Faro, R. R., Blank, A. F., Alves, P. B., Picanço, M. C., Cristaldo, P. F., Araújo, A. P. A., & Bacci, L. (2018). Alternative control of Aedes aegypti resistant to pyrethroids: lethal and sublethal effects of monoterpene bioinsecticides. Pest management science, 74 (4), 1001-1012. https://doi.org/10.1002/ps.4801
Silva, L. S., Mar, J. M., Azevedo, S. G., Rabelo, M. S., Bezerra, J. A., Campelo, P. H., Machado, M. B., Trovati, G., Santos, A. L., Fonseca-Filho, H. D., Souza, T. P., & Sanches, E. A. (2019). Encapsulation of Piper aduncum and Piper hispidinervum essential oils in gelatin nanoparticles: a possible sustainable control tool of Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. Journal of the Science of Food and Agriculture, 99 (2), 685-695. https://doi.org/10.1002/jsfa.9233
Silva, M. F. R., Bezerra-Silva, P. C., Lira, C. S., Lima Albuquerque, B. N., Neto, A. C. A., Pontual, E. V., Maciel, J. R., Paiva, P. M. G. & Navarro, D. M. D. A. F. (2016). Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae). Experimental parasitology, 165, 64-70. https://doi.org/10.1016/j.exppara.2016.03.017
Simões, C. M. O., Schenkel, E. P., Gosmann, G., Mello, J. C. P., Mentz, L. A., & Petrovick, P. R. (2004). Farmacognosia: da planta ao medicamento. UFSC.
Simões, E. R. B., Santos, E. A., Abreu, M. C., Nascimento Silva, J., Nunes, N. M. F., Costa, M. P., Pessoa, O. D. L., Pessoa, C., & Ferreira, P. M. P. (2015). Biomedical properties and potentiality of Lippia microphylla Cham. and its essential oils. Journal of intercultural ethnopharmacology, 4 (3), 256. https://doi.org/10.5455/jice.20150610104841
Soonwera, M., & Phasomkusolsil, S. (2016). Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitology research, 115 (4), 1691-1703. https://doi.org/10.1007/s00436-016-4910-z
Stadnik, A., Oliveira, M. I. U. D., & Roque, N. (2016). Levantamento florístico de Myrtaceae no município de Jacobina, Chapada Diamantina, estado da Bahia, Brasil. Hoehnea, 43 (1), 87-97. https://doi.org/10.1590/2236-8906-46/2015
Stappen, I., Wanner, J., Tabanca, N., Wedge, D. E., Ali, A., Kaul, V. K., Lal, B., Jaitak, V., Gochev, V. K., Schmidt, E., & Jirovetz, L. (2015). Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya. Natural product communications, 10 (1), 133-138.
Tabanca, N., Gao, Z., Demirci, B., Techen, N., Wedge, D. E., Ali, A., Sampson, B. J.; Werle, C.; Bernier, U. R.; Khan, I. A.; & Baser, K. H. C. (2014). Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species. Journal of agricultural and food chemistry, 62 (35), 8848-8857. https://doi.org/10.1021/jf5024752
Trindade, E. L., Garcia, F., Ferreira, R., & Pasa, M. C. (2016). Lamiaceae-levantamento de dados das plantas medicinais recorrentes no estado de Mato Grosso presentes no herbário UFMT campus de Cuiabá-MT. Biodiversidade, 15 (2), 183-190.
Tyagi, V., Patel, R., Hazarika, H., Dey, P., Goswami, D., & Chattopadhyay, P. (2017) Chemical composition and bioefficacy for larvicidal and pupicidal activity of essential oils against two mosquito species. International Journal of Mosquito Research, 4, 112-118.
Vivekanandhan, P., Usha-Raja-Nanthini, A., Valli, G., & Subramanian Shivakumar, M. (2020). Comparative efficacy of Eucalyptus globulus (Labill) hydrodistilled essential oil and temephos as mosquito larvicide. Natural product research, 34 (18), 2626-2629. https://doi.org/10.1080/14786419.2018.1547290
Voris, D. G. R., Dias, L. S., Lima, J. A., Lima, K. S. C., Lima, J. B. P., & Lima, A. L. S. (2018). Avaliação das atividades larvicida, adulticida e anticolinesterase de óleos essenciais de Illicium verum Hook. f., Pimenta dioica (L.) Merr., e Myristica fragrans Houtt. contra vetores do vírus Zika. Ambiente. Environmental Science and Pollution Research, 25 (23), 22541-22551. https://doi.org/10.1007/s11356-018-2362-y
Yang, S., Bai, M., Yang, J., Yuan, Y., Zhang, Y., Qin, J., Kuang, Y., & Sampietro, D. A. (2020). Chemical composition and larvicidal activity of essential oils from Peganum harmala, Nepeta cataria and Phellodendron amurense against Aedes aegypti (Diptera: Culicidae). Saudi Pharmaceutical Journal, 28 (5), 560-564. https://doi.org/10.1016/j.jsps.2020.03.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Antônia Laíres da Silva Santos; Felipe Pereira da Silva Santos; Alyandra de Sousa Nascimento; Layana Karine Farias Lima; Lucas Mendes Feitosa Dias; Geovanna Trajano Oliveira da Silva; Mahendra Rai; Chistiane Mendes Feitosa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.