Organic carbon stock and physical soil attributes in a crop-forest and eucalyptus integration system in the Cerrado Mineiro
DOI:
https://doi.org/10.33448/rsd-v11i3.25774Keywords:
Sustainability; Climatic changes; Organic material.Abstract
The crop-forest integration system (ILF) integrates the forestry and agricultural component. This study aimed to evaluate organic carbon stocks and soil physical attributes under a crop-forest integration system, in southwestern Minas Gerais. The study was carried out at the Experimental Farm of the Universidade do Estado de Minas Gerais, Academic Unit of Passos. The experimental design used was in randomized blocks, with three treatments and seven replications. The effect of this system on soil attributes was tested by means of analysis of variance. The effects of treatments were evaluated considering the position of row and between rows. When there was a significant effect (P<0.05) of treatment, the Tukey-Kramer test was performed at P<0.05 and between the test positions t and P<0.05, using the Physical attributes altered by the system ILP were soil density, total soil volume and temperature. The primary forest showed higher COS contents and stock than the other treatments. The total stock of COS showed no difference between the ILP system and the primary forest, indicating the sustainability of this production system.
References
Anjos, J. T.; Uberti, A. A. A.; Vizzotto, V. J.; Leite G. B. & Krieger, M. (1994). Propriedades físicas em solos sob diferentes sistemas de uso e manejo. Revista Brasileira de Ciência do Solo, 18 (1), 139-145.
Assunção, S. A.; Pereira, M. G.; Rosset, J. S.; Berbara, R. L. L & García, A. C. (2019) Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of the Total Environment, 658 (1), 901-911.
Alvares, C. A., J. L. M.; Gonçalves, S. R.; Vieira, C.R. Silva & W. Franciscatte, (2011). Spatial variability of physical and chemica lattributes of some forest soils in southe a stern of Brazil. Sci. Agric, 68, 697–705.
Balbino, L. C.; Barcellos, A. O. & Stone, F. L. (2011) Marco referencial: integração lavoura-pecuária floresta (ILPf). Brasília, DF: Embrapa, 130.
Bayer, C.; Mielniczuk, J.; Amado, T. J. C.; Martinneto, L.; & Fernandes; S. V. (2000) Organic matter storage in a Sandy clayloam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Tillage Res, 54, 101-109.
Blake, G.R. & Hartge, K. H. Bulk density. In: KLute A (Ed.). (1986) Methods of soil analysis: physical and miner alogical methods. Madison: ASA, 363-375.
Ballantyne A.P.; Smith. W.K.; Anderegg; W. R. L.; Kauppi, P.; Sarmiento, J.; Tans, P. P., Shevliakova; E., Pan, Y. & Poulter, B. (2017) Accelerating net terrestrial carbon uptake during warming hiatus due to reduced respiration. Nature Climate Change, 7, 148–152.
Bossuyt, H.; Six, J. & Hendrix, P. F., (2005) Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem, (2) 37, 251-258.
Camargo, O. A.; Moniz, A. C.; Jorge, J. A. & Valadares, J. M. A. S. Métodos de análise química, mineralógica e física de solo do Instituto Agronômico de Campinas. Campinas, Instituto Agronômico, 1986. 94 p. (Boletim técnico, 106)
Chevallier, T.; Blanchart, E.; Albrecht, A. & Feller, C. (2004) The physical protection of soil organic carbon in agrregates: a mechanism of carbon storage in a Vertisol under pasture and market gardening (Martinique, West Indies). Agric. Ecosyst. Environ. 103, 375-387.
Ferreira, C. D.; Moreira, F. T. de A.; Souto, P. C.; Alencar, L. dos S.; Borges, C. H. A. Soil organic carbon in a toposequence in the semiarid of Paraíba, Brazil. Research, Society and Development, 9 (5), p. e164953365, 2020.
Troian, D.; Rosset, J. S.; Ozório, J. M. B.; Castilho, S. C. P.; Marra, L. M. (2020) Carbono orgânico e estoque de carbono do solo em diferentes sistemas de manejo. Revista em Agronegócio e meio ambiente. 13 (2), 1447-1469.
Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. (2006) Sistema brasileiro de classificação de solos. 2. ed. Rio de Janeiro, 306.
FAO, Global soil organic carbon map. http://www.fao.org/3/a-i8195e.pdf.
Hombegowda, H. C.; Van Straaten, O.; Köhler & M., Hölscher, (2016) D. On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India. Soil.
Ferreira, D. F. (2011) Sisvar 5.0: sistema de análises estatísticas. Lavras: UFLA.
INMET - Instituto Nacional de Meterologia, (2019). http://www.inmet.gov.br/portal/.
Lal, R. Soil science and the carbon civilization. (2007) Soil SCi. Soc. Am. J. 71 (5), 1425-1437.
Lal, R. Soil carbono sequestration to mitigate climate change. (2004) Encyclopedia of Energy, 123 (1-2), 289–298.
Lal, R. Carbon sequestration. Philosophical Transactions of the Royal Society, (2008). 363(1492), 815-830.
Piao, S.; Huang, M.; Liu; Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P. & Houghton, R. A. (2018) Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 11, 739–743.
Resck, D. V. S. (2005) O potencial de seqüestro de carbono em sistemas de produção de grãos sob plantio direto no Cerrado. In: Simpósio sobre Plantio Direto e Meio Ambiente: Seqüestro de Carbono e Qualidade da Água, 1. Foz do Iguaçu. Anais. Foz do Iguaçu: FEBRAPDP/Itaipu Nacional. 72-80.
Soto-Pinto, L. (2010) et al. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems, Dorchecht, 78 (1), 39-51.
Silva, I. F. & Mielniczuk, J. (1998) Ação do sistema radicular de planta na formação e estabilização de agregados do solo. Revista Brasileira de Ciência do Solo, 21 (1), 113-117.
Vomocil, J. A. (1965) Porosity. In: BLACK, C. A. (Ed.). Methods of soil analysis: physical and mineralogical properties, including statistics of measurement and sampling. Madison: American Society of Agronomy, 499-510.
Van Oost, K. et al. (2007) The impact of agricultural soil erosion on the global carbon cycle. The American Association for the Advancement of Science, 318 (5850), 626-629.
Veiga, M.; Reinert & D. J.; Reichert, J. M. (2010) Tillage systems and nutrient sources affecting soil cover, temperature and moisture in clayey Oxisol under corn. Revista Brasileira de Ciência do Solo, 34, 2011-2020.
Weimann C.; Farias, J.A.; Deponti G. & deponti, G. (2017) Viabilidade econômica do componente arbóreo do sistema agrossilvipastoril comparada ao plantio floral na pequena propriedade rural. Pesquisa Florestal Brasileira, 37, 429-36.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Franciane Diniz Cogo; Maria Flávia de Paiva ; Lorena Flávia Silva; Lorena Ferreira de Sousa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.