A brief theoretical approach on allelopathic potential in plant communities

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.26021

Keywords:

Chemical compounds; Ecology; Biocontrol.

Abstract

In plant communities, plants can interact positively, negatively, or neutrally. This is a very important feature to ensure survival, in addition to providing information for building knowledge and products to be used in the specific control of some weeds. The objective of this work was to carry out a literature review on the effects of allelopathy on plant communities, which can be observed both in intraspecific and interspecific competitions. Based on the results of the literature, it is likely that allelopathic compounds can alter ecosystem components that, in turn, drive processes and interactions, which modify the composition and dynamics of plant communities. However, a major gap in allelopathy research lies in the lack of methodologies to be applied in the field that demonstrate the role of these compounds in interspecific and community-wide development. Thus, it is necessary that studies that take into account the sources of variation between species, the types of impacts caused on associated species and, mainly, their effects at the community level.

References

Almeida, F.S. (1990). Alelopatia: a defesa das plantas. Ciência Hoje, 45, 11-3.

Araújo, G. R., Erasmo, E. A. L., Da Silva, P. P., Oliveira, D. I., Gonçalves, F. B., Borges, K. S., & Rodrigues, R. D. C. M. (2021). Potencial alelopático de óleo de eucalyptus e de Capim citronela no controle de plantas daninhas. Brazilian Journal of Development, 7(5), 44248-44237.

Awty-Carroll, D., Hauck, B., Clifton-Brown, J., & Robson, P. (2020). Allelopathic and intraspecific growth competition effects establishment of direct sown Miscanthus. GCB Bioenergy, 12, 396-409.

Baldwin, I.T. et al. (2006). Volatile signaling in plant-plant interactions: ‘talking trees’ in the genomics era. Science, 311(5762), 812-815.

Bartholomew, B. (1970). Bare zone between California shrub and grasslands communities: the role of animals. Science, 170(3963), 1210-1212.

Bertin, C. Et al. (2007). Grass roots chemistry: meta-tyrosine, an herbicidal nonprotein amino acid. Proc. Nat. Acad. Sci. U.S.A., 104(43), 16964-16969.

Bi, H.H. (2007). Rice allelopathy induced by methyl jasmonate and methyl salicylate. J. Chem. Ecol., 33(5), 1089-1103.

Chen, L., Li, J., Zhu, Y., Guo, L., Ji, R., Miao, Y., Guo L., Du, H. & Liu, D. (2022) Caffeic Acid, an Allelochemical in Artemisia argyi, Inhibits Weed Growth via Suppression of Mitogen-Activated Protein Kinase Signaling Pathway and the Biosynthesis of Gibberellin and Phytoalexin. Frontiers in Plant Science, 12(802198), 1-15.

Coley, P.D., Bryant, J.P. & Chapin, F.S. (1985). Resource availability and plant antiherbivore defense. Science, 230(4728), 895–899.

Duke, S.O. & Dayan, F.E. (2006). Modes of action of phytotoxins from plants. In: pedrol, n., gonzález, l., reigosa, m.j. (eds) allelopathy: a physiological process with ecological implications. Springer, dordrecht, 23, 511-536.

Ens, E.J. (2009). Identification of volatile compounds released by roots of an invasive plant, bitou bush (chrysanthemoides monilifera spp. Rotundata), and their inhibition of native seedling growth. Biol. Invasions., 11(2), 275-287.

Ferreira, E. V. R., Franco, S. P. B., Santos, A. F. & Souza, R. C. (2020). Allelopathic activity of broom (Scoparia dulcis L.) on the germination of invasive plants. Rev. Bras. Cienc. Agrar., Recife, 15 (2), e7368.

Flora do Brasil. (2020). Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br.

FRANCISCO, Bruno Santos et al. (2021). Allelopatic effects of Waltheria indica L.: Biocontrol potential in ecological restoration. Research, Society and Development. 10 (13), e235101321263-e235101321263.

Hall C. R., Waterman J. M., Vandegeer R.K., Hartley S. E., & Johnson S. N (2019) The Role of Silicon in Antiherbivore Phytohormonal Signalling. Frontiers in Plant Science, 10, 1132.

Hameed, A., Shahina, M., Young, L., Lai, W., Sridhar, K. R., & Young, C. (2019). Bacteriostatic stimulus of meropenem on allelochemical-metabolizing burkholderia sp. LS-044 mitigates ferulic acid autotoxicity in rice (oryza sativa ssp. japonica cv. tainung 71). Plant and Soil, 443(1-2), 73-86.

Inderjit, et al. (2011). The ecosystem and evolutionary context of allelopathy. Trends in ecology and evolution, 26(12), 655-662.

Inderjit., Dakshini, K.M.M. (1995). On laboratory bioassays in allelopathy. The botanical review, 61(1), 28-44.

Inderjit; Del moral, R. (1997). Is separating resource competition from allelopathy realistic? Bot. Rev. 63(3), 221-230.

Inderjit; Nilsen, E.T. (2003). Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit. Rev. Plant. Sci., 22(3-4), 221-238.

Kaur, h. Et al. (2009). Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. Plos one, 4(3), e4700.

Kong, C.H., Hu, F. & Xu, X.H. (2002). Allelopathic potential and chemical constituents of volatiles from ageratum conyzoides under stress. J. Chem. Ecol., 28(6), 1173-1182.

Lambers, H. & Colmer, T.D. (2005). Root physiology: from gene to function. Springer, dordrecht, 274.

Lankau, R.A. (2008). Chemical trait creates a genetic trade-off between intra- and interspecific competitive ability. Ecology, 89(5), 1181-1187.

Li, X.F. Et al. (2011). Allelopathic potential of artemisia frigida and successional changes of plant communities in the northern china steppe. Plant soil, 341, 383-398.

Lima, L. M., Pedrosa, L. S., Osório, M. I C., et al.. (2022). Phytotoxicity of plant extracts of Vismia japurensis cultivated in vivo and in vitro. Brazilian Journal of Biology, 82, e235475.

Lohmann, M., Scheu, S. & Müller, C. (2009). Decomposers and root feeders interactively affect plant defence in sinapis alba. Oecologia, 160(2), 289-298.

Mano, A. R. O. (2004). Efeito alelopático do extrato aquoso de sementes de Cumaru (Amburana cearensis S.) sobre a germinação de sementes, desenvolvimento e crescimento de plântulas de alface, picão-preto e carrapicho. Dissertação (Mestrado em Agronomia/Fitotecnia) - Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza, CE, Brasil.

Medina-Villar, S., Uscola, M., Pérez-Corona, M. E., & Jacobs, D. F. (2020). Environmental stress under climate change reduces plant performance, yet increases allelopathic potential of an invasive shrub. Biol Invasions, 22, 2859-2881.

Meiners, S. J. Et al. (2012). Developing an ecological context for allelopathy. Plant ecology, 213(8), 1221-1227.

Muller, C.H., Muller, W.h., & Haines, B.L. (1964). Volatile growth inhibitors produced by aromatic shrubs. Science, 143(3605), 471-473.

Nishida, N. Et al. (2005). Allelopathic effects of volatile monoterpenoids produced by salvia leucophylla: inhibition of cell proliferation and dna synthesis in the root apical meristem of brassica campestris seedlings. J. Chem. Ecol., 31(5), 1187-1203.

Patrick, Z. A. (1971). Phytotoxic substance associated with the decompostion in soil of plant residues. Soil sci., 111(1), 13-18.

Putnam, A.R. & Duke, W.B. (1978). Allelopathy in agroecosystems. Ann. Ver. Phytopathol., 16, 431-451.

Rice, E.L. (1984). Allelopathy. 2ª edição. New York, EUA: Academic Press, 422.

Rimando, A.M. et al. (2001). Searching for rice allelochemicals: an example of bioassay-guided isolation. Agron. J., 93, 16-20.

Rivoal, A. Et al. (2011). Does competition stress decrease allelopathic potential? Biochem. Syst. Ecol., 39(4), 401-407.

Rocha, L. F., Francisco, B. S., Dutra, F. B., Teração, B. S., de Almeida, L. S., Viveiros, E., & da Silva, J. M. S. (2021). Efeitos alelopáticos de seringueira (Hevea brasiliensis (Willd. Ex A. Juss.) Müll. Arg.) Na germinação e crescimento inicial da alface (Lactuca sativa L.). Research, Society and Development, 10(14), e70101421712-e70101421712.

Schmidt-Silva, V. (2012). Potencial alelopático do óleo essencial de espécies de Heterothalamus nativas do Rio Grande do Sul. Tese de doutorado, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil

Siemens, D. Et al. (2002). The cost of defense in the context of competition: Brassica rapa may grow and defend. Ecology, 83(2), 505-517.

Silva, E. R. D. (2018). Alelopatia: um possível fator relevante em comunidades vegetais campestres e um caminho alternativo no manejo de plantas daninhas? Tese de doutorado, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

Silva, E. R. Et al. (2015). Does the phytotoxic shrub Heterothalamus psiadioides affect a plant community through allelopathy? Plant. Ecol., 216(1), 87-97.

Stojicic, D., Tošic, S., Stojanovic, G., Zlatkovic, B., Jovanovic, S., Budimir, S., & Uzelac, B. (2022). Volatile Organic Compound Composition and Glandular Trichome Characteristics of In Vitro Propagated Clinopodium pulegium (Rochel) Bräuchler: Effect of Carbon Source. Plants, 11(2), 198.

Swain, T. (1977). Secondary compounds as protective agents. Rev. Plant. Physiol., 28(1), 479-501.

Tharayil, N. Et al. (2009). Dual purpose secondary compounds phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol, 181(2), 424-434.

The Plant List (2013). Version 1.1. Published on the Internet. http://www.theplantlist.org.

Wang, R., Xue, Q., Wang, J., & Tan, L. (2020). Competitive interactions between two allelopathic algal species: Heterosigmaakashiwo and Phaeodactylum tricornutum. Marine Biology Research, 16(1), 32-43.

Whittaker, R.H. & Feeny, P.P. (1971). Allelochemicals: chemical interactions among plants. Science, 171(3973), 757-770.

Published

16/03/2022

How to Cite

SILVA, M. P. da .; DUTRA, F. B.; SANTOS, G. de O. B. dos .; NASCIMENTO , T. J. do .; FERNANDES, G. de C. .; BARBOSA, M. C. .; BOA, G. S. .; VIVEIROS, E.; FRANCISCO, B. S. . A brief theoretical approach on allelopathic potential in plant communities . Research, Society and Development, [S. l.], v. 11, n. 4, p. e20511426021, 2022. DOI: 10.33448/rsd-v11i4.26021. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26021. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences