Arabica coffee price forecast: a neural network application CNN-BLSTM

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26101

Keywords:

Artificial neural networks; Arabica coffee; Keras; Python.

Abstract

This work proposes the use of the CNN-BLSTM neural network as a tool to predict the price of arabica coffee. The database provided by CEPEA (Center for Advanced Studies in Applied Economics) presents a historical series of the price of arabica coffee, in the period between January 1997 and December 2021. Forecast models based on neural networks LSTM, BLSTM, CNN and CNN-BLSTM were implemented, in the Python language, using the Keras framework. Results obtained, from the four models, were compared using MAE, RMSE and MAPE metrics. It was verified, for a horizon of 6 months, that the CNN-BLSTM model presented better performance.

References

Aurigliett, L. M. M. & Tonin, J. M. (2021). Relação entre base, volatilidade e liquidez: evidências para o mercado futuro de café no Brasil. Revista AE&S, 2(1), 1-4. https://doi.org/10.22167/2675-20210003.

Althelaya, K. A. (2018). Evaluation of bidirectional LSTM for short and long term stock market prediction. In: International Conference on Information as Communication System (ICICS), Irbid, Jordan.

Ayyanathan, N. & Kannammal, A. (2014). Share price time series forecasting for effective supply chain information Exchange. International Journal of Logistics Systems and Management, 18(1). https://doi.org/10.1504/IJLSM.2014.062125.

Barros, D. (2021). Dados sobre Café no Brasil: Consumo, Produção e Exportação. Disponível em: https://reviewcafe.com.br/dicas-e-receitas/dados-sobre-cafe-no-brasil/. Acesso em: 15 jan. 2022.

Bastiani, M., Santos, J. A. A., Schmidt, C. A P. & Sepulveda, G. P. L. (2018). Application of data mining algorithms in the management of the broiler production. Geintec. 8(4), 4574-4587. https://doi.org/10.7198/geintec.v8i4.1275.

Cankurt, S. & Subasi, A. (2015). Comparasion of linear regression and neural network models forecasting tourist arrivals to turkey. Eurasian Journal of Science &Engineering.

CEPEA (2022). Indicador do café arábica. https://www.cepea.esalq.usp.br/br/indicador/cafe.aspx.

Deina, C. et al. (2021). A methodology for coffee price forecasting based on extreme learning machines. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2021.07.003.

Faria, T. A. (2011). Mercado future do café: um estudo de caso. Revista de Estudos Sociais, 13(26), 138-156.

Faria, A. C. S. & Manolescu, F. M. K. (2004) A produção de café no Brasil. <http://www.inicepg.univap.br/cd/INIC_2004/trabalhos/inic/pdf/IC6-8.pdf>.

Fazard, A. & Gulliver, T. A. (2019). Log message anomaly detection and classification using Auto-B/LSTM and Auto-GRU. ResearchGate.

Gazzola, M. G. (2017). Um método para avaliação automática da qualidade de recursos educacionais abertos usando deep learning. < http://www.br-ie.org/pub/index.php/sbie/article/view/7678/5473>.

Graves A. & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. < http://proceedings.mlr.press/v32/graves14.pdf>.

Graves, A. & Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional recurrent neural networks. Advances in Neural Information Processing Systems, 545–552.

Haykin, S. (2005). Neural networks: a comprehensive foundation. New Delhi: Pearson Prentice Hall.

Lawal, A. (2021). Wind speed prediction using hybrid 1D CNN and BLSTM network. IEEE Acess, 9(1). https://doi.org/10.1109/ACCESS.2021.3129883.

Lopes, L. P. (2018). Predição do preço do café naturais brasileiro por meio de modelos de statistical machine learning. Sigmae, 7(1), 1-16.

Lu, W., Li, J., Li, Y., Sun, A. & Wang, J. (2020). A CNN-LSTM-based model to forecast stock prices. Complexity. https://doi.org/10.1155/2020/6622927.

Martins, L. S. F. (2021). Análise da previsão do cenário de produção e cultivo do café arábica no Brasil. Trabalho de Conclusão de Curso. Medianeira, PR, UTFPR.

Marujo, L. (2021). Estudo comparativo entre métodos estatísticos e de inteligência artificial para previsão do preço do café no Brasil. Dissertação de mestrado. Medianeira, PR, UTFPR.

Mousa, A. E. & Schuller, B. (2016). Deep bidirectional long short-term memory recurrent neural etworks for grapheme-to-phoneme conversion utilizing complex many-to-many alignments. In: Interspeech 2016, San Francisco, USA.

Nelson, M. Q., Pereira, A C. M. & Oliveira R. A. (2017). Stock market’s price prediction with LSTM neural networks. In: International Joint Conference of Neural Networks (IJCNN), Anchorage, Alaska.

Novanda R. R. et al. (2018). A comparison of various forecasting techniques for coffee prices. https://iopscience.iop.org/article/10.1088/1742-6596/1114/1/012119/pdf.

Pacheco, A. G. C. (2016). Classificação de espécies de peixe utilizando redes neurais convolucional. https://arxiv.org/pdf/1905.03642.pdf.

Pinheiro, T. C., Santos, J. A. A. & Pasa, L. A. (2020). Gestão da produção de frangos de corte por meio de redes neurais. Revista Holos, 2(1), 1-15. https://doi.org/10.15628/holos.2020.9043.

Santos, J. A. A. (2021). Aplicação de redes neurais artificiais na previsão do preço do milho no estado do Paraná. Revista Engenharia e Tecnologia, 13(2), 124-134.

Santos, J. A. A. & Chaucoski, Y. (2020). Previsão do consumo de energia elétrica na região sudeste: um estudo de caso usando SARIMA e LSTM. Revista CEREUS, 12(1). https://doi.org/10.18605/2175-7275/cereus.v12n4p93-104.

Santos, J. A. A. & Spancerski, J. S. (2021). Previsão da produtividade de arroz: uma aplicação de redes neurais recorrentes LSTM. Revista CEREUS, 13(2), 163-175. https://doi.org/10.18605/2175-7275/cereus.v13n2p163-175.

Silva, C. A. G. (2018). Previsão do preço da commodity café arábica: Uma aplicação da Metodologia Box-Jenkins. Revista Espacios, 30(4).

SINDICAFÉ-MG (2022). O café no mundo. http://sindicafe-mg.com.br/cafe-no-mundo.

Sun, Q., Jankovic, M. V. & Bally, L. (2018). Predicting blood glucose with an LSTM and Bi-LSTM based deep neural network. https://arxiv.org/abs/1809.03817. Acesso em: 25 set. 2021.

.

Tatagiba, S. D., Pezzopane, J. E. & Reis, E. F. (2010). Crescimento vegetativo de mudas de café arábica submetidas a diferentes níveis de sombreamento. Coffee Science, 5(3): 251-261.

Zao, Z. (2017). LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems. 11(2), 68-75. https://doi.org/10.1049/iet-its.2016.0208.

Published

10/02/2022

How to Cite

SANTOS, J. A. A. dos. Arabica coffee price forecast: a neural network application CNN-BLSTM. Research, Society and Development, [S. l.], v. 11, n. 3, p. e3511326101, 2022. DOI: 10.33448/rsd-v11i3.26101. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26101. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings