Effect of a diamond-like carbon film on the mechanical and surface properties of microwave-cured polymethylmethacrylate

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26271

Keywords:

Diamond-like carbon; Polymethyl methacrylate; Surface roughness; Wear resistance; Flexural strength.

Abstract

Introduction: Microwave-cured polymethylmethacrylate (MCPM) are commonly used in dentistry due low cost, transparency and easy handling. However, do not have a long useful life, due to their chemical fragility and low hardness and wear resistance. Aim: Assessing the effect of a diamond-like carbon (DLC) film coating on the mechanical and surface properties of MCPM. Methodology: The MCPM samples were divided into control (Gc) and treatment (Gt) groups, and were subjected to flexural strength (n=18), wear resistance (n=18) tests, and to topography and surface roughness (Ra) analysis by three-dimensional optical profilometry (n=18). The films were deposited by plasma-enhanced chemical vapor deposition. Differences between groups were assessed by the Mann-Whitney and t tests using a 5% significance level (p<0.05). Results: The Gt had higher surface roughness (0.108 ± 0.01µm) than the Gc (0.038 ± 0.01µm), with p<0.0001. No significant difference (p=0.606) in flexural strength was found between Gt (103.3 MPa) and Gc (105.3 MPa). No significant difference was found between the groups in terms of straightness (Gt: 0.006 ± 0.0059 mm and Gc 0.005 ± 0.0052mm, p=0.774) or indentation depth (Gt: 29.974 ± 8.69µm and Gc: 28.169 ± 5.71µm, p=0.610) after the wear test. Conclusion: Coating the MCPM surface with a DLC film affected the surface roughness, with no effects on flexural strength and wear resistance. New studies are suggested to better understand these effects, perhaps with variations in the deposition parameters such as coating thickness or on the sp3/sp2 ratio.

References

Akaike, S.; Hayakawa, T.; Kobayashi, D.; Aono, Y.; Hirata, A.; Hiratsuka, M. & Nakamura, Y. (2015). Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets. Dent Mater J, 34(6), 888-895.

Anusavice, K. J. (2005). Propriedades mecânicas dos materiais dentários. In Phillips, Materiais Dentários (11th ed., pp. 69-95). Rio de Janeiro: Elsevier.

Asakawa, R.; Nagashima, S.; Nakamura, Y.; Hasebe, T. & Suzuki, T.; Hotta, A. (2011). Combining polymers with diamond-like carbon (DLC) for highly functionalized materials. Surf Coat Technol, 206, 676–685. doi: 10.1016/j.surfcoat.2011.02.064

Bordin, D.; Coelho, P. G.; Bergamo, E. T. P.; Bonfante, E. A.; Witek, L. & Cury, A. A. B. (2018). The effect of DLC-coating deposition method on the reliability and mechanical properties of abutment’s screws. Dental Materials, 34(6), 128-137. doi: 10.1016/j.dental.2018.03.005

Ban, M. & Yuhara, T. (2009). Chemical resistance of DLC thin film deposited PMMA substrates. Surf Coat Technol, 203(17/18), 2587- 2590. doi: 10.1016/j.surfcoat.2009.02.051.

Barbosa, D. B.; Souza, R. F.; Lucas, M. G.; Leles, C. R. & Compagnoni, M. A. (2003). Resistência a flexão de resina acrílica polimerizada pela energia de microondas. Braz Dent Sci, 6(2), 72-79.

Chatzivasileiou, K.; Emmanouil, L.; Kotsiomit, E.; Pissiotis, A. (2013). Polishing of denture base acrylic resin with chairside polishing kits: An SEM and surface roughness study. Int J Prosthodont, 26(1), 79–81.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.

Corazza, P. H.; Silva, A. M.; Queiroz, J. R. C.; Marocho, M. S.; Bottino, M. A.; Massi, M. & Assunção e Souza, R. O. (2014). Carbon film coating of abutment surfaces: Effect on the abutment screw removal torque. Implant Dent, 23(4) 434-438. doi: 10.1097/ID.0000000000000111

Dearnaley, G. & Arps, J. H. (2005). Biomedical applications of diamond-like carbon (DLC) coatings: A review. Surf Coat Technol, 200(7), 2518-2524. doi: 10.1016/j.surfcoat.2005.07.077

Enomoto, K.; Hasebe, T.; Asakawa, R.; Kamijo, A.; Yoshimoto, Y.; Suzuki, T.; Takahashi, K. & Hotta A. (2010). Controlling the drug release rate from biocompatible polymers with micro-patterned diamond-like carbon (DLC) coating. Diam Relat Mater, 19, 806–813. doi: 10.1016/j.diamond.2010.01.053

ISO - International Organization for Standardization. (2013). Dentistry – Base polymers – Part 1: Denture base polymers. Geneva: ISO 20795-1(E).

Kiesow, A.; Sarembe, S.; Pizzey, R. L.; Axe, A.S. & Bradshaw, D. J. (2016). Material compatibility and antimicrobial activity of consumer products commonly used to clean dentures. JPD, 115(2), 189-198.

Li, D. J; Cui, F. Z.; Gu, H. Q. & Li, W. Z (2000). Ion beam-assisted deposition of DLC films on PMMA and TiN/PMMA. Vacuum, 56(3) 205-211.

Lin, Z.; Lv, S. B.; Yu, Z. J.; Li, M.; Lin, T.; Ba, D.; Choi, C. & Lee, I. (2008). Effect of bias voltage on Diamond-like carbon film deposited on PMMA substrate. Surf Coat Technol, 202(22/23), 5386-5389. doi: 10.1016/j.surfcoat.2008.06.071

Lifshitz, Y. (1999). Diamond-like carbon—present status. Diam Relat Mater, 8 (8/9), 1659-1676.

Machado, A. L.; Giampaolo, E. T.; Vergani, C. E.; Pavarina, A. C.; Salles, D. S. L. & Jorge, J.H. (2012). Weight loss and changes in surface roughness of denture base and reline materials after simulated tooth brushing in vitro. Gerodontology, 29, 121–127.

Matsumoto, R.; Sato, K.; Ozeki, K.; Hirakuri, K. & Fukui, Y. (2008). Cytotoxicity and tribological property of DLC films deposited on polymeric materials. Diam Relat Mater, 17, 1680–1684. https://doi.org /10.1016/j.diamond.2008.02.027.

Ohtake, N.; Uchi, T.; Yasuhara, T. & Takashima. (2012) Characteristics of Diamond-like carbon films deposited on polymer dental materials. Jpn J Appl Phys, 51(9), 090128-1/6. doi: 10.1143/JJAP.51.090128

Park, C.; Lee, J. & Park, Y. S. (2015). Thickness effects of TiC interlayer on tribological properties of diamond-like carbon prepared by unbalanced magnetron sputtering method. J Nanosci Nanotechnol, 15, 9009–9013. doi: 10.1166/jnn.2015.11579

Penkov, O. V.; Pukha, V. E.; Starikova, S. L.; Khadem, M.; Starikov, V. V.; Maleev, M. V. & Kim, D. (2016). Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants. Biomaterials, 102, 130-136. doi: .biomaterials.2016.06.029

Písařík, P.; Jelínek, M.; Remsa, J.; Mikšovský, J.; Zemek, J.; Jurek, K.; Kubinová, S.; Lukeš, J. & Šepitka, J. (2017). Antibacterial, mechanical and surface properties of Ag-DLC films prepared by dual PLD for medical applications. Mater Sci Eng C, 77, 955–962. doi 10.1016/j.msec.2017.04.005

Procópio, A. L. F.; da Silva, R. A.; Maciel, J. G.; Sugio, C. Y. C.; Soares, S.; Urban, V. M. & Neppelenbroek, K. H. (2018). Antimicrobial and citotoxic effects of denture base acrylic resin impregnated with cleaning agents after long-term immersion. Toxicology in Vitro, 52, 8-13.

Queiroz, J. R. C.; Fissmer, S. F.; Koga-Ito, C.Y.; Salvia, A. C. R. D.; Massi, M.; Silva Sobrinho, A. S. & Nogueira Júnior, L. (2013). Effect of Diamond-like carbon thin film coated acrylic resin on Candida albicans biofilm formation. J Prosthodont, 22(6), 451-455. doi:10.1111/jopr.12029

Robertson, J. (2002). Diamond-like amorphous carbon. Mater Sci Eng R, 37, 129-281.

Sharma, R.; Pandey, A. K.; Sharma, N;. Sasmal, D. & Barhai, P. K. (2010). Diamond like carbon films as a protective surface on PMMA for biomedical applications. Surf Coat Technol, 205(7), 2495-2502. doi: 10.1016/j.surfcoat.2010.09.054

Silva, A. M.; Figueiredo, V. M. G.; Prado, R. F.; Santanta-Melo, G. F.; Ankha, M. V. A.; Vasconcellos, L. M. R.; Silva Sobrinho, A. S.; Borges, A. L. S. & Nogueira Junior, L. (2019). Diamond-like carbon films over reconstructive TMJ prosthetic materials: Effects in the cytotoxicity, chemical and mechanical properties. JOBCR, 9(3), 201-207.

Sorgini, D. B.; Silva-Lovato, C. H.; Souza, R. F.; Davi, L. R. & Paranhos, H. F. O. (2012). Abrasiveness of conventional and specific denture-cleansing dentifrices. Braz Dent J, 23(2), 154-159. doi: 10.1590/s0103-64402012000200011

Tsubone, D.; Hasebe, T.; Kamijo, A. & Hotta, A. (2007). Fracture mechanics of diamond like carbon (DLC) films coated on flexible polymer substrates. Surf Coat Technol, 201, 6423–6430. doi: 10.1016/j.surfcoat.2006.12.008

Venâncio, V. S. (2005). Caracterização de filmes de carbono do tipo diamante para aplicações biomédicas. Dissertation (Mestrado em Ciências em Engenharia Metalúrgica e de Materiais) - Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Vionet, M. Z. (2005). Recobrimentos de carbono amorfo para utilização em limas endodônticas. Dissertation (Mestrado em Ciências em Engenharia Metalúrgica e de Materiais) - Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Ykada, Y. (1994). Surface modification of polymers for medical applications. Biomaterials. 15(10), 725-736.

Zhang, H.; Guo, S.; Wang, D.; Zhou, T.; Wang, L. & Ma, J. (2016). Effects of nanostructured, diamond-like, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires. Angle Orthod, 86, 782-788.

Downloads

Published

14/02/2022

How to Cite

SILVA, P. L. P. da .; LEMOS, G. A.; SOUSA, F. B. de; SOBRINHO, A. S. da S. .; QUEIROZ, J. R. C. de; BATISTA, A. U. D. Effect of a diamond-like carbon film on the mechanical and surface properties of microwave-cured polymethylmethacrylate. Research, Society and Development, [S. l.], v. 11, n. 3, p. e10211326271, 2022. DOI: 10.33448/rsd-v11i3.26271. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26271. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences