Mechanical behavior of mortars produced with crushed PET partially replacing conventional fine aggregate

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.26422

Keywords:

Mortar; Crushed PET; Mechanical properties.

Abstract

Polyethylene terephthalate (PET) has become one of the most used plastic materials worldwide owing to its versatility and low production costs. However, environmental issues arise from the inadequate disposal of this material and the considerable volume it occupies in sanitary landfills, particularly because the long decomposition time of PET. Considering this scenario, the construction industry has a considerable potential to incorporate wastes from other productive systems. In this regard, concrete and mortar can be an alternative to incorporate PET. Thus, this study aimed to evaluate the mechanical properties of mortars produced with a partial replacement of fine aggregate by crushed PET. Two mix designs with different binder/ fine aggregate ratios were produced using Portland cement CP II Z-32, lime, sand, and crushed PET replacing 5%, 10%, 15%, 20%, and 25% of sand. The compressive strength and splitting tensile strength were determined. As a result, it was observed that both compressive and splitting tensile strength values increased with increasing PET percentages from the age of 14 days. These results indicate that the use of PET replacing the conventional fine aggregate can improve the mechanical properties of mortars.

Author Biographies

Solange da Rocha Patrício, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande, Brasil

John Kennedy Guedes Rodrigues, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande

Loredanna Melyssa Costa, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande

Danielly do Nascimento Silva Oliveira, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande

Jonny Dantas Patrício, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande

References

Abed, J. M, A Khaleel, B., Aldabagh, I. S. & Sor, N. H. (2021). The effect of recycled plastic waste polyethylene terephthalate (PET) on characteristics of cement mortar. Journal of Physics: Conference Series, 1973(1), 012121-28.

Aocharoen, Y. & Chotickai, P. (2021). Compressive Mechanical Properties of Cement Mortar Containing Recycled High-Density Polyethylene Aggregates: Stress–Strain Relationship. Case Studies Construction Materials, 32(6), 752-63.

Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., Mohamed, A. M. & Alaskar, A. (2020). Use of recycled plastic as fine aggregate in cementitious composites: a review. Construction and Building Materials, 253(6), 119146-53.

ABNT (2001), NBR 13.281/2005: Argamassa para assentamento e revestimento de paredes e tetos – Requisitos. Associação Brasileira de Normas Técnicas.

ABNT (2001), NBR NM 23/2001: Cimento Portland e outros materiais em pó - Determinação da massa específica. Associação Brasileira de Normas Técnicas.

ABNT (2003), NBR NM 248/2003: Agregados - Determinação da composição granulométrica. Associação Brasileira de Normas Técnicas.

ABNT (2005), NBR 13.278/2005: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da densidade de massa e do teor de ar incorporado. Associação Brasileira de Normas Técnicas.

ABNT (2006), NBR NM 45/2006: Agregados - Determinação da massa unitária e do volume de vazios. Associação Brasileira de Normas Técnicas.

ABNT (2009), NBR NM 52/2009: Agregado miúdo - Determinação da massa específica e massa específica aparente. Associação Brasileira de Normas Técnicas.

ABNT (2019), NBR 7.215/2019: Cimento Portland - Determinação da resistência à compressão. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

Assis, M. W. V., Santos, T. T. (2020). Propriedades químicas, problemas ambientais e reciclagem de plástico: uma revisão de literatura. Jornal Interdisciplinar de Biociências, 5(1), 31-37.

Associação Brasileira da Indústria do PET- ABIPET. (2021). Indústria do PET no Brasil 2021. http://www.abipet.org.br/UserFiles/File/Site%201.pdf

Badache, A., Benosman, A. S., Senhadji, Y. & Mouli, M. (2018). Thermo-physical and mechanical characteristics of sand- based lightweight composite mortars with recycled high-density polyethylene (HDPE). Construction and Building Materials, 163(8), 40-52.

Bahij, S., Omary, S., Feugeas, F. & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, [S.L.], 113 (5), 157-75.

Benosman, A. S., Taibi, H., Senhadji, Y., Mouli, M., Belbachir, M. & Bahlouli, M. I. (2017). Plastic waste particles in mortar composites: sulfate resistance and thermal coefficients. Progress in Rubber Plastics and Recycling Technology, 33(3), 171-202.

Esmaeilian, B., Wang, B., Lewis, K., Duarte, F., Ratti, C. & Behdad, S. (2018). The future of waste management in smart and sustainable cities: a review and concept paper. Waste Management, 81(5), 177-95.

Ge, Z., Sun, R., Zhang, K., Gao, Z. & Li, P. (2013). Physical and mechanical properties of mortar using waste Polyethylene Terephthalate bottles. Construction and Building Materials, 44(5), 81-86.

Kocot, A., Ćwirzeń, A., Ponikiewski, T. & Katzer, J. (2021) Strength Characteristics of Alkali-Activated Slag Mortars with the Addition of PET Flakes. Materials, [S.L.], 14(21), 6274-81.

Koshti, R., Mehta, L. & Samarth, N. (2018). Biological recycling of polyethylene terephthalate: A mini-review. Journal of Polymers and the Environment, 26(8), 3520-3529.

Latroch, N., Benosman, A. S., Bouhamou, N., Senhadji, Y. & Mouli, M. (2018). Physico-mechanical and thermal properties of composite mortars containing lightweight aggregates of expanded polyvinyl chloride. Construction and Building Materials, 175(3), 77-87.

Leal, A. P. 2021). Resíduos da construção civil: uma revisão sobre as possiblidades de aplicação. Revista Ibero-Americana de Humanidades, Ciências e Educação, 7(6), 459-483.

Nogueira, L. I. A., Martins, I. C. & Silva, G. R. (2020). A gestão de resíduos sólidos urbanos e o desenvolvimento sustentável: uma revisão. Environmental Scientiae, 2(1), 48-57, 11.

Oliveira, L. A. P. & Gomes, J. P. C. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712-1717.

Passatore, C. R. (2013) Química dos Polímeros. Vozes.

Prata, J. C., Silva, A. L. P., Costa, J. P., Mouneyrac, C., Walker, T. R., Duarte, A. C. & Rocha-Santos, T. (2019). Solutions and integrated strategies for the control and mitigation of plastic and microplastic pollution. International journal of environmental research and public health, 16(13), 2411-19.

Silva, A. M., Brito, J. & Veiga, R. (2014). Incorporation of fine plastic aggregates in rendering mortars. Construction and Building Materials, 71(3), 226- 236.

Şimşek, B., Uygunoğlu, T. (2018). Thermal, electrical, mechanical and fluidity properties of polyester-reinforced concrete composites. Sādhanā, 43(4), 57-65.

Stone, C., Windsor, F. M., Munday, M. & Durance I. (2019). Natural or synthetic–how global trends in textile usage threaten freshwater environments. Science of the Total Environment, 34(2), 134689-134696.

Thiam, M. & Fall, M. (2021). Mechanical, physical and microstructural properties of a mortar with melted plastic waste binder. Construction and Building Materials, 302(2), 124190-124198.

Vidales, J. M. M., Hernández, L. N., López, J. I. T., Flores, E. E. M. & Hernández, L. S. (2014). Polymer mortars prepared using a polymeric resin and particles obtained from waste pet bottle. Construction and Building Materials, 65(2), 376-383.

Published

13/03/2022

How to Cite

PATRÍCIO, S. da R. .; MENDONÇA, A. M. G. D.; RODRIGUES, J. K. G. .; COSTA, L. M. .; OLIVEIRA, D. do N. S. .; PATRÍCIO, J. D. Mechanical behavior of mortars produced with crushed PET partially replacing conventional fine aggregate . Research, Society and Development, [S. l.], v. 11, n. 4, p. e13211426422, 2022. DOI: 10.33448/rsd-v11i4.26422. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26422. Acesso em: 26 nov. 2024.

Issue

Section

Engineerings