Evaluation of the antimicrobial potential of extracts from fungi Penicillium spp.

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26457

Keywords:

Fungi; Bioactive compounds; Antimicrobial activity.

Abstract

Fungi of the genus Penicillium produce secondary metabolites that are used as a model for the synthesis and development of antibiotics such as Penicillin, Penicillin V, Ampicillin, Amoxicillin and Griseofulvin. The production of such compounds can be explored through small changes in physical and chemical parameters of the crop. These changes stimulate silenced biosynthetic pathways and this increases the diversity of bioactive compounds produced by the fungus. Therefore, the aim of the present study was to investigate the antimicrobial potential of Penicillium spp. isolated in the state of Amazonas. The strains studied in this work are deposited in the Coleção de Fungos da Amazônia (CFAM) of the Instituto Leônidas e Maria Deane (ILMD), and were reactivated in PDA medium for seven days. For the production of extracts, a spore suspension solution was used at a concentration of 1 x 10-6 CFU/mL. 50 µL of this suspension was inoculated into erlenmeyers containing 25 mL of BDL, SB, YES and ISP2 media. The experiment was carried out in triplicate, in static mode, incubated at 28 ºC for 15 days. After this period, the fermented broth was extracted with ethyl acetate and the mycelium with methanol. Then, the Minimum Inhibitory Concentration - MIC of the extracts obtained in ethyl acetate against the pathogens Candida albicans, Candida tropicalis, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus was determined. The best activities were observed for the P. oxalicum and P. citrinum strains cultivated in BDL and SB with MIC of 250 µg/ml and 62.5 µg/ml, respectively.

References

Almeida, M. I., Almeida, N. G., Carvalho, K. L., Gonçalves, G. A., Silva, C. N., & Santos, E. A. (2012). Co-occurrence of aflatoxins B1, B2, G1 and G2, ochratoxin A, zearalenone, deoxynivalenol, and citreoviridin in rice in Brazil. Food Additives & Contaminants: Part A.

Azevedo, E., & Barata, M. (2018). Diversidade no reino Fungi e aplicações na indústria. Revista de Ciência Elementar, 6(4).

Bomtempo, F. V., Santin, F. M., Pimenta, R. S., de Oliveira, D. P., & Guarda, E. A. (2017). Production of cellulases by Penicillium oxalicum through solid state fermentation using agroindustrial substrates. Acta Scientiarum, pp. 321-329.

Bon, E. P. S; Ferrara, M. A; Corvo, M. L.(2008). Enzimas em biotecnologia: Produção, aplicações e mercado. Interciência.

Calixto, C. M., & Cavalheiro, É. T. (2012). Penicilina: Efeito do Acaso e Momento Histórico. Química nova na escola, 34(3), 118-123.

Cardoso, E. J. B. N; Andreote, F. D. (2016). Microbiologia do solo. ESALQ.

Clark, B. R., Capon, R. J., Lacey, E., Tennant, S., & Gill, J. H. (2006). Citrinin revisited: from monomers to dimers and beyond. Organic & Biomolecular Chemistry.

da Rocha, M. W. (2013). Produção, purificação e caracterização espectrométrica da micotoxina citreoviridina produzida pelo penicillium citreonigrum em meio de cultura yes (yeast extract sucrose). Brasília: Dissertação de Mestrado em Ciências da Saúde da Universidade de Brasília.

da Silva, J. C., Fernandes, O. C., Martins, M. d., Rodrigues Jr, A. d., & Teixeira, M. F. (2010). Atividade antimicrobiana de espécies de Penicillium mantidas sob duas condições de preservação. Revista de la Sociedad Venezolana de Microbiología .

de Lima, A. K., Ribeiro, J. S., de Souza, I. d., Rodrigues, J. C., de Souza, T. C., Maia, C. R., & Fernandes, O. C. (2017). Fungos isolados da água de consumo de uma comunidade ribeirinha do médio Rio Solimões, Amazonas-Brasil: potencial patogênico. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 12(6), 1017-1024.

de Oliveira, G. P. (2019). Indução metabólica de fungos filamentosos pelas técnicas de co-cultivo, OSMAC e modulação epigenética: produção de metabólitos secundários com atividade neuroprotetora. Belo Horizonte: Tese de doutorado em Química da Universidade Federal de Minas Gerais.

do Nascimento, A. K., Nobre, C., Soares, M. T., Teixeira, J. A., & Porto, A. L. (2016). XXI Congresso Brasileiro de Engenharia Química .Síntese de frutooligossacarídeos a partir da βfrutofuranosidase obtida de Penicillium citreonigrum URM 4459. Fortaleza, Ceará, Brasil.

Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, pp. 881-895.

Espinosa, K. C., Chávez, M. A., Ramírez, I. P., Flores, T. I., & Rodríguez, M. J. (2020). Diversidad fúngica en la atmósfera de la habana (cuba) durante tres períodos poco lluviosos. Revista internacional de contaminación ambiental.

Ferreira, I. M. (2016). Imobilização do fungo Penicillium citrinum CBMAI 1186 e lipase de Pseudomonas fluorescens em biopolímeros para aplicações em biocatálise. São Carlos: Tese de Doutorado em Ciências da Universidade de São Paulo.

Florencio, M. (2014). Estudo da produção e aplicação da enzima extracelular nuclease p1 do fungo Penicillium citrinum thom 1131 ATCC 14994.

Gonçalves, F. J., Freire, F. d., & Lima, J. L. (2013). Fungos endofíticos e seu potencial como produtores de compostos bioativos. Essentia, 15(1), 71-92.

Guimarães, D. O. (2010). Produtos naturais de fungos endofíticos associados a espécies de Asteraceae e ensaio antibiótico no modelo de infecção em "Caenorhabditis elegans". Universidade de São Paulo, Ribeirão Preto.

Hawksworth, D. L., & Lücking, R. (2017). Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiology Spectrum, 5.

Hetherington, A. C., & Raistrick, H. (1931). On the Production and Chemical Constitution of a New Yellow Colouring Matter, Citrinin, Produced from Glucose by Penicillium citrinum Thom. Philosophical Transactions of the Royal Society of London. Series B.

Houbraken, J. A., Frisvad, J. C., & Samson, R. A. (2010). Taxonomy of Penicillium citrinum and related species. Fungal Diversity, 44, 117-133.

Huang, J. N., Zou, Q., Chen, J., Xu, S. H., Luo, D., & Zhang, F. G. (2018). Phenols and diketopiperazines isolated from Antarctic-derived fungi, Penicillium citreonigrum SP-6. Phytochemistry Letters, 27, 114-118.

Itoh, Y., Shimura, S., Yasuda, H., Shitoh, T., & Yamano, T. (1986). Isolation and identification of l-kestose produced from sucrose by fructose-transferring enzyme of Penicillium oxalicum. Nippon Shokuhin Gakkaishi, pp. 831-834.

Iwaguchi, T., Kitagawa, H., Hirose, K., Ishida, T., & Yamamoto, T. (1980). 5-di-(2'-tetrahydropyranyl) secalonic acid d as a new antibiotic derivative with anticancer activity. Gann.

Jayashree, M., & Wesely, E. G. (2019). The Impact of Weather on the Fungal Abundance and Richness in Sorghum Grains in Selected Districts of Tamil Nadu, India. Infokara research.

Junior, G. P., da Silva, K. N., Santiago, P. A., Santiago, S. R., Ohse, K. O., Martim, S. R., & de Aquino, P. F. (2021). prospecção enzimática e atividade antimicrobiana de espécies de penicillium isoladas do bioma amazônico. Brasilina Journal of Development.

Kim, W. G., Song, N. K., & Yoo, I. D. (2001). Quinolactacins A1 and A2, new acetylcholinesterase inhibitors from Penicillium citrinum. The journal of antibiotics.

Kleinkauf, H., & Dohren, H. V. (1996). A nonribosomal System of Peptide Biosynthesis. European journal of biochemistry, pp. 335-351.

Kothari, I. L., Choksi, P. C., Patel, H. B., & Udhaya, J. (1998). Biodregadation of 2,4 - D by Penicillium. Recent Advances in Ecobiological Research.

Kozlovsky , A. G., Zhelifonova, V. P., Antipova, T. V., Adanin, V. M., Ozerskaya, S. M., Kochkina, G. A.,Gräfe, U. (2003). Quinocitrinines A and B, new quinoline alkaloids from Penicillium citrinum Thom 1910, a permafrost fungus. The journal of antibiotics.

Kumar, P. G., & Suneetha, V. (2021). Microbial pectinases: Wonderful enzymes in fruit juice clarification. International Journal of MediPharm Research, pp. 12-20.

Kuramata, M., Fujioka, S., Shimada, A., Kawano, T., & Kimura, Y. (2007). Citrinolactones A, B and C, and Sclerotinin C, plant growth regulators from Penicillium citrinum. Bioscience, Biotechnology, and Biochemistry.

Lima, J. M., Pereira, J. O., Costa Neto, P. Q., Batista, I. H., Santos, J. C., Araújo, S. P., Azevedo, J. L. (2015). Avaliação de fungos endofíticos e epifíticos com potencial para produção de biossurfactantes, isolados de macrófitas aquáticas do rio Negro em Manaus, Amazonas. Em L. A. Oliveira, O. C. Fernandes, M. A. Jesus, J. L. Bentes, S. L. Andrade, A. Q. Souza, & C. Santos, Diversidade Microbiana da Amazônia. Editora INPA.

Makoto, K., Kaoru , Y., Mayumi , S., Kazunaga , Y., Hirokazu, A., Tomoyuki, O., & Daisuke , U. (1997). Tanzawaic Acids A, B, C, and D: Inhibitors of Superoxide Anion Production from Penicillium citrinum. Chemistry Letters.

Maravilla, M. P., Romo, M. A., Navarro, K. G., Sánchez, J. E., & Delgado, L. A. (2017). Cellulases and xylanases production by Penicillium citrinum cgetcr using coffee pulp in solid state fermentation. Revista Mexicana de Ingeniería Química, pp. 757-769.

Molinari, G. (2009). Natural Products in Drug Discovery: Present Status and Perspectives. Pharmaceutical Biotechnology, 655, 13-27.

Nagel, D. W., Pachler, G. R., Steyn, P. S., Wessels, P. L., Gafner, G., & Kruger, G. J. (1974). X-Ray structure of oxaline: a novel alkaloid from Penicillium oxalicum. Journal of the Chemical Society, Chemical Communications, pp. 1021-1022.

NCCLS. (2003). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eighth Edition, NCCLS document M2-A8. The National Committee for Clinical Laboratory Standards., 940 West Valley Road, Suite 1400, Wayne, Pennsylvania.

Pi, C., Zhang, Z., Xiang, B., Tian, H., Liao, Q., Chen, Y., & Hu, S. (2020). Constructing a novel expression system by specific activation of amylase expression pathway in Penicillium. Microbial Cell Factories.

Pimenta, E. P. (2011). Investigação das condições de crescimento e produção de metabólitos secundários das linhagens de fungos Penicillium citrinum e Penicillium oxalicum. São Carlos.

Pimentel, P. S. (2014). Caracterização de enzimas celulolíticas produzidas pelo fungo filamentoso penicillium citrinum. manaus: dissertação do programa multi-institucional de pós-graduação em biotecnologia da universidade federal do amazonas.

Pitt, J. I. (1979). The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London: Academic Press.

Rodríguez, J., Copa‐Patiño, J. L., & Pérez‐Leblic, M. L. (1995). Purification and properties of a chitinase from Penicillium oxalicum autolysates. Letters in Applied Microbiology, pp. 46-49.

Sacido, A. A., & Genilloud, O. (2002). New PCR primers for the screening of NRPS and PKS-I System in Actinomycetes: Detection and distribution of these biosynthetic gene surveys. Environmental microbiology, 10-24.

Seetharaman, P., Gnanasekar, S., Chandrasekaran, R., Chandrakasan, G., Syed, A., Hodhod, M., Sivaperumal, S. (2017). Isolation of limonoid compound (Hamisonine) from endophytic fungi Penicillium oxalicum LA-1 (KX622790) of Limonia acidissima L. for its larvicidal efficacy against LF vector, Culex quinquefasciatus (Diptera: Culicidae). Environmental Science Pollution Research, pp. 21272-21282.

Song, W., Han, X., Qian, Y., Liu, G., Yao, G., Zhong, G., & Qu, Y. (2016). Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnology for Biofuels.

Steyn, P. S. (1970). The isolation, structure and absolute configuration of secalonic acid D, the toxic metabolite of Penicillium oxalicum. Tetrahedron, pp. 51-57.

Thomaz, S. M. (2009). O papel ecológico das bactérias e teias alimentares microbianas em ecossistemas aquáticos.Maringá, PR. Nupélia.

Tsuda, M., Kasai, Y., Komatsu, K., Sone, T., Tanaka, M., Mikami, Y., & Kobayashi, J. (2004). Citrinadin A, a Novel Pentacyclic Alkaloid from Marine-Derived Fungus Penicillium citrinum. Organic Letters.

Venil, C. K., Velmurugan, P., Dufossé, L., Devi, P. R., & Ravi, A. V. (2020). Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. Jornal of Fungi.

Wakana, D., Hosoe, T., Itabashi, T., Okada, K., Tabaki, G. M., Yaguchi, T., Kawai, K. (2006). New citrinina derivatives isolated from Penicillium citrinum. Journal of Natural Medicines.

Wang, X., Filho, J. S., Hoover, A. R., King, J. B., Ellis, T. K., Powell, D. R., & Cichewicz, R. H. (2010). Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. Journal of Natural Products.

Yang, Z., Kang, H., He, X., Zhuang, G., Zhang, H., & Bai, Z. (2011). Microbial degradation and utilization of lignocellulosic biomass pyrolysis oil. Second International Conference on Mechanic Automation and Control Engineering, pp. 7457-7459.

Yao, G., Gao, L., Wu R., Kan, Q., Liu, G., & Qu, Y. (2016). Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Journal of Microbiology and Biotechnology, pp. 73-86.

Yuan, W. H., Wei, Z. W., Dai, P., Wu, H., Zhao, Y. X., Zhang, M. M., Zheng, W. F. (2014). Halogenated Metabolites Isolated from Penicillium citreonigrum. Chemistry & Biodiversity, 11.

Yuan, W. H., Zhang, Y., Zhang, P., & Ding, R. R. (2017). Antioxidant Sesquiterpenes from Penicillium citreonigrum. Natural Product Communications, 12(12), 1827-1829.

Published

14/02/2022

How to Cite

SANTIAGO, P. A. L. .; SANTIAGO, S. R. S. da S. .; AQUINO , P. F. de .; NUNOMURA, S. M.; NUNOMURA, R. de C. S. . Evaluation of the antimicrobial potential of extracts from fungi Penicillium spp. Research, Society and Development, [S. l.], v. 11, n. 3, p. e11511326457, 2022. DOI: 10.33448/rsd-v11i3.26457. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26457. Acesso em: 14 jun. 2024.

Issue

Section

Exact and Earth Sciences