Treatment of aquaculture effluent with floating macrophytes: systemic review and meta-analysis

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.26533

Keywords:

Biofilter; Removal efficiency; Nutrients; Aquatic plants.

Abstract

Aquaculture is the production of organisms that present partial or total development in water, generating an effluent rich in nutrients. The use of artificial foods is common in production, but they are highly nutritious in nitrogen and phosphorus. Such nutrients are sources of energy for aquatic plants, such as macrophytes. The use of macrophytes for nutrient absorption is common in some treatment systems such as wetlands. The objective was to carry out a systemic review and meta-analysis of the efficiency of the use of floating macrophytes for the treatment of aquaculture effluent. The platforms used were Capes Journals, Scopus and Web of Science. From the articles found, data were collected from authors, year of publication, published scientific journal, macrophyte species, characteristics evaluated in the effluent and place of study. Means and standard deviations were used for statistical analysis, through the standardized mean difference (SMD), method for performing the meta-analysis. Only 24 articles were included in the systemic review, but only 9 articles were able to extract the necessary information to carry out the meta-analysis. Among the chemical properties, pH was the most measured, being present in 21 articles. The most common macrophyte genera were Eichhornia, Pistia, Lemna, Salvinia and Azolla. Only the meta-analysis of orthophosphate showed no statistical difference, while total nitrogen, ammonia, nitrite, nitrate, total Kjeldahl nitrogen, total inorganic nitrogen, total phosphorus and orthophosphate were significant. It can be seen that macrophytes have a greater affinity for certain nutrients.

References

Akinbile, C. O. & Yusoff, M. S. (2012). Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. International Journal of Phytoremediation, 14 (3), 201-211.

Amorim, R. V. (2014). Produção de tilápias-do-Nilo em sistemas sem renovação de água com Wetlands para tratamento de efluentes.

Arana, L. V. (1997). Princípios químicos de qualidade de água em aquicultura: uma revisão para peixes e camarões. Florianópolis, SC: UFSC.

Berwanger, O., Suzumura, E. A., Buehler, A. M. & Oliveira, J. B. (2007). Como avaliar criticamente revisões sistêmicas e metanálises. Revista Brasileira de Terapia Intensiva. 19 (4), 475-80.

Boyd, C. E., Tucker, C. S., Mcnevin, A., Bostick, K & Clay, J. (2007). Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Reviews in Fisheries Science. 15 (4), 327-360.

Brix, H. (1994). Functions of macrophytes in constructed wetlands. Water Science and. Technology.29 (4), 71-78.

Chagas, T. W. G., Salati, E. & Tauk-Tornisielo, S. M. (2012). Sistemas construídos de áreas alagadas: revisão da legislação e dos padrões de qualidade da água. Holos Environment.12 (1), 87-98.

Cohen, R. R. H., Dresler, P. V., Phillips, E. J. P & Cory, R. L. (1984). The effect of the Asian clam, Corbicula fluminea, on phytoplankton of the Potomac River, Maryland. Limnology and Oceanography. 29 (1), 170−180.

Coldebella, A.; Gentelini, A.; Piana, PA.; Coldebella, P.; Boscolo, W. & Feiden, A. (2017). Effluents from fish farming ponds: a view from the perspective of its main components. Sustainability. 10 (1), 3.

Costa-Pierce, B.A. (1998). Preliminary investigation of an integrated aquaculture–wetland ecosystem using tertiary-treated municipal wastewater in Los Angeles County, California. Ecological Engineering. 10 (4), 341-354.

Cyrino, J. E. P., Bicudo, Á. D. A., Sado, R. Y., Borghesi, R. & Dairiki, J. K. (2010). A piscicultura e o ambiente – o uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira de Zootecnia. 39 (1), 68-87.

De Lacerda, L. D., Vaisman, A. G., Maia, L. P., Silva, C. A. R. & Cunha, S. E. M. (2006). Relative importance of nitrogen and phosphorus emissions from shrimp farming and other anthropogenic sources for six estuaries along the NE Brazilian coast. Aquaculture. 253 (1-4), 433-446.

Dong, X.; Lv, L.; Zhao, W.; Yu, Y & Liu, Q. (2018). Optimization of integrated multi-trophic aquaculture systems for the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture Environment Interactions. 10: 547-556.

Esteves, F. A. (1998). Fundamentos de Limnologia. Rio de Janeiro, RJ: Interciência.

Fao. (2020). FAO - Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. 2020. Rome.

Ferraz, E. de M., Carvalho, G. C. S., Schaefer, A. L. C., Narahara, M. Y. & Cerqueira, V. R. (2011). Influência da temperatura de cultivo sobre crescimento e diferenciação sexual de robalo-peva, Centropomus parallelus Poey, 1860. Revista Brasileira de Engenharia de Pesca. 6 (1), 1-16.

Ferreira, M. A., Lopes, T. C., Nascimento, D. N. O. & Catro, A. P. S. (2022). Macrófitas e seu potencial fitorremediativos em estações de tratamento de esgoto: uma revisão bibliográfica. Research, Society and Development .11(2)e13711225457.

Gentelini, A. L., Gomes S. D., Feiden, A., Zenatti, D., Sampaio, S. C. & Coldebella, A. (2008). Produção de biomassa das macrófitas aquáticas Eichhornia crassipes (aguapé) e Egeria densa (egeria) em sistema de tratamento de efluente de piscicultura orgânica. Semina: Ciências Agrárias. 29(2): 441-448.

Gonzalez, A. C. (2015). Macrófitas aquáticas e efluente de cervejaria: dinâmica e perspectivas.

Goswami, D.; Das, S. (2018). Eichhornia crassipes mediated copper phytoremediation and its success using catfish bioassay. Chemosphere. 210: 440-448.

Haven, D. S. & Morales, A. R. (1966). Aspects of biodeposition by oysters and other invertebrate filter feeders. Limnology and Oceanography. 11(4), 487−498.

Henares, M. N. P. & Camargo, A. F. M. (2014a). Treatment efficiency of efluent prawn culture by wetland with floating aquatic macrophytes arranged in series. Brazilian Journal of Biology. 74 (4), 906-912.

Henares, M. N. P. & Camargo, A. F. M. (2014b). Estimating nitrogen and phosphorus saturation point for Eichhornia crassipes (Mart.) Solms and Salvinia molesta Mitchell in mesocosms used to treating aquaculture effluent. Acta Limnologica Brasiliensia. 26 (4), 420-428.

Henry-Silva, G. G. & Camargo, A. F. M. (2006). Efficiency of aquatic macrophytes to treat Nile tilápia pond effluents. Scientia Agricola. 63(5), 433-438.

Henry-Silva, G. G. & Camargo, A. F. M. (2008). Tratamento de efluentes de carcinicultura por macrófitas aquáticas flutuantes. Revista Brasileira de Zootecnia. 181-188.

Hu, J.; Qiao, Y., Zhou, L. & Li, S. (2012). Spatiotemporal distributions of nutrients in the downstream from Gezhouba Dam in Yangtze River, China. Environmental Science and Pollution Research. 19 (7), 2849-2859.

Hussar, G. J. & Bastos, M. C. (2008). Tratamento de efluente de piscicultura com macrófitas aquáticas flutuantes. Engenharia Ambiental. 5(3), 274-285.

Iwa – International Water Association. (2000). Constructed wetlands for pollution control. processes, performance, design. and operation. 1a ed. London: IWA publishing.

Kadlec, R. H. & Wallace, S. (2008). Treatment wetlands. CRC press: Boca Raton.

Kerepeczki, E., Gál, D., Szabó, P. & Pekár, F. (2003). Preliminary investigations on the nutrient removal efficiency of a wetland-type ecosystem. Hydrobiologia. 506 (509), 665-670.

Kiridi, E. A. & Ogunlela, A. O. (2016). Modelling phytoremediation rates of aquatic macrophytes in aquaculture effluent.International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering. 10 (3), 353-360.

Kutty, S. R. M., Ngatenah, S. N. I., Isa, M. H. & Malakahmad, A. (2009). Nutrients removal from municipal wastewater treatment plant effluent using Eichhornia crassipes. International Scholarly and Scientific Research & Innovation. 3 (12), 414-419.

Leira, M. H., Cunha, L. T., Braz, M. S., Melo, C. C. V., Botelho, H. A., Refhim, L. S. (2017). Qualidade da água e seu uso em pisciculturas. Pubvet. 11: 1102.

Lewis, S. & Clarke, M. (2001). Forest Plots: Trying to See the Wood and the Trees. Bmj. 322 (7300), 1479–1480.

Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F., Chen, Y. M. & Shih, K. C. (2005). Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environmental Pollution. 134 (3), 411–421.

Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F. & Sui, H. Y. (2010). Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture. Water Environmental Research. 82(8), 759– 768.

Macagnan, D. C. (2011). Tecnologia no tratamento de águas residuárias.

Macedo, C. F. & Sipaúba-Tavares, L. H. (2010). Eutrofização e qualidade da água de piscicultura: consequências e recomendações. Boletim do Instituto de Pesca. 36(2), 149-163.

Martelo, J. & Borrero, J. A. L. (2012). Macrófitas flotantes em el tratamento de aguas residuales: uma revisión del estado del arte. Ingeniería y Ciencia. 8(15), 221-243.

Metcalf, Eddy. (2003). Wastewater Engineering: Treatment and Reuse. Boston: McGraw-Hill.

Mohapatra, D. P., Ghangrekar, M. M., Mitra, A. & Brar, S. K. (2012). Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture. Environmental Technology.33(12), 1445-1453.

Oliveira Santos, A. A. & Camargo, A. F. M. (2015). Constructed wetlands for treatment of harvest effluents from grow-out ponds of the Amazon river prawn. Aquaculture Research. 46 (11), 2676-2684.

Osti, J. A., Henares, M. N. & Camargo, A. F. M. (2018). The efficiency of free-floating and emergent aquatic macrophytes in constructed wetlands for the treatment of a fishpond effluent. Aquaculture Research. 49 (10), 3468-3476.

Pavlineri, N., Skoulikidis, N. T. & Tsihrintzis, V. A. (2017). Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chemical Engineering. 308, 1120-1132.

Pistori, R. E. T., Henry-Silva, G. G., Biudes, J. F. V. & Camargo, A. F. M. (2010). Influence of aquaculture effluents on the growth of Salvinia molesta. Acta Limnologica Brasiliensia. 22 (2), 179-186.

Popa, R., Moga, I. C., Rissdorfer, M., Ilis, M. D. G., Petrescu, G., Craciun, N., Matache, M., Covaliu, C. & Stoian, G. (2017). Duckweed utilization for fresh water conservation (management) in recirculated aquaculture systems. International. Journal of Conservation Science. 8 (4), 715-722.

Redding, T.; Todd, S. & Midlen, A. (1997). The treatment of aquaculture wastewaters—a botanical approach. Journal of Environmental Management. 50(3), 283-299.

Reddy, K. R. & De Busk, W. F. (1985). Nutrient removal potential of selected aquatic macrophytes 1. Journal of Environmental Quality. 14(4), 459-462.

Rubim, M. A., Isolino Sampaio, P. R. & Parolin, P. (2015). Biofilter efficiency of Eichhornia crassipes in wastewater treatment of fish farming in Amazonia.Phyton, International Journal of Experimental Botany. 84 (1), 244-251.

Ruenglertpanyakul, W.; Attasat, S. & Wanichpongpan, P. (2004). Nutrient removal from shrimp farm effluent by aquatic plants. Water Science and Technology. 50(6), 321-330.

Sales, C. V. (2011). Uso de duas espécies de macrófitas aquáticas, Eichhornia crassipes e Pistia stratiotes em tratamento de resíduos de cervejaria na cidade de Toledo/PR.

Schulz, C.; Gelbrecht, J. & Rennert, B. (2003). Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture. 217(1-4), 207-221.

Schulz, C.; Gelbrecht, J. & Rennert, B. (2004). Constructed wetlands with free water surface for treatment of aquaculture effluents. Journal of Applied Ichthyology. 20 (1), 64-70.

Schwartz, M. E. & Boyd, C. E. (1995). Constructed wetlands for treatment of channel catfish pond effluents. Progressive Fish-Culturist. 57(4), 255-266.

Silva, A. D. R., Santos, R. B., Bruno, A. M. S. S., Genteline, A. L., Silva, A. H. G. & Soares, E. C. (2014). Biofilter efficiency of water hyacinth on limnological variables in irrigation channels used for tambaqui farming. Acta Amazonica. 44 (2), 255-262.

Sipaúba-Tavares, L. H. & Braga, F. M. D. S. (2008). Constructed wetland in wastewater treatment. Acta Scientiarum. Biolical Sciences. 30(3), 261-265.

Sipaúba-Tavares, L. H., Favero, E. G. P. & Braga, F. M. S. (2002). Utilization of macrophyte biofilter in effluent from aquaculture: I. Floating plant. Brazilian Journal of Biology. 62 (4A), 713-723.

Siqueira, T. V. (2018). Aquicultura: a nova fronteira para produção de alimentos de forma sustentável. Revista do BNDES. 25(49), 119-170.

Snow, A. M. & Ghaly, A. E. (2008). A comparative study of the purification of aquaculture wastewater using water hyacinth, water lettuce and parrot’s feather. American Journal of Applied Sciences. 5 (4), 440-453.

Souza, A. F. L. & Vasconcelos, E. L. Q. (2016). Utilização de macrófita aquática flutuante Pistia stratiotes no tratamento de efluentes de piscicultura no estado do Amazonas. Pubvet. 10: 873-945.

Staudenmann, J. & Junge-Berberovic, R. (2003). The Otelfingen aquaculture project: Recycling of nutrients from wate water in a temperate climate. Journal of Applied Aquaculture. 13 (1-2), 67-101.

Sudiarto, S. I. A., Renggaman, A. & Choi, H. L. (2019). Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics. Journal of Environmental Management. 231, 763-769.

Swann, P. F. (1975). The toxicology of nitrate, nitrite and n-nitroso compounds. Journal of the Science of Food and Agriculture. 26(11), 1761-1770.

Thomaz, S. M., Chambers, P. A., Pierini, A. S. & Pereira, G. (2007). Effects of phosphorus and nitrogen amendments on the growth of Egeria najas. Aquatic Botany. 86 (2), 191-196.

Toledo, J. J. & Penha, J. (2011). Performance of Azolla caroliniana Willd. and Salvinia auriculate Aubl. on fish farming effluent. Brazilian Journal of Biology. 71 (1), 37-45.

Travaini-Lima, F., da Veiga, M. A. M. S. & Sipaúba-Tavares, L. H. (2015). Constructed wetland for treating effluent from subtropical aquaculture farm. Water, Air, & Soil Pollution. 226 (3), 1-10.

True, B.; Johnson, W. & Chen, S. (2004). Reducing phosphorus discharge flow through aquaculture I: facility and effluent characterization. Aquacultural Engineering. 32 (1), 129-144.

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metaphor package. Journal of Statistical Software. 36(3), 1-48.

Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment. 380(1-3), 48-65.

Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water. 2(3), 530-549.

Yan, A., Wnag, Y., Tan, S. N., Yousof, M. L. M., Ghosh, S. & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal poluted land. Frontiers in Plant Science, 11,359.

Zoppas, F. M., Bernardes, A. M. & Meneguzzi, Á. (2016). Parâmetros operacionais na remoção biológica de nitrogênio de águas por nitrificação e desnitrificação simultânea. Engenharia Sanitária e Ambiental: órgão oficial de informação técnica da ABES. 21 (1), 29-42.

Published

20/03/2022

How to Cite

NOGUEIRA, G. dos S. .; BEZERRA, G. de S. .; PIANA, P. A. . Treatment of aquaculture effluent with floating macrophytes: systemic review and meta-analysis . Research, Society and Development, [S. l.], v. 11, n. 4, p. e36811426533, 2022. DOI: 10.33448/rsd-v11i4.26533. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26533. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences