Thyroid cancer bios signaling

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26619

Keywords:

Sinalização; Cancer; MAPK; Thyroid; BRAF.

Abstract

Thyroid cancer integrates subtypes that are involved in signaling pathways that result in biological activities, such as differentiation, proliferation, in the absence of disease, and cell survival. BRAF is a gene that encodes the protein kinase\threonine that integrates the MAPK\ERK signaling pathway, as RAF signals are activated by the MAPK\ERK kinase and activates ERK\receptors. The current integrative review addresses the concepts of biosignaling mechanisms involved in thyroid cancer. The methodology used was based on reviewing the contextual principles of signaling that occurs in types of thyroid cancer, such as epidemiological, etiological and physiological factors. This integrative literature review aims to update and show the importance of understanding the biosignaling of thyroid cancer, which aims to highlight the role of genes involved in each type of malignant thyroid neoplasm. studies provide the engagement creation of genetic mutation profile panels, which evidence scientific factors that help in understanding the etiological complexity of thyroid cancer.

References

Abdullah, M. I., Junit, S. M., Ng, K. L., Jayapalan, J. J., Karikalan, B., & Hashim, O. H. (2019). Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations. International journal of medical sciences, 16(3), 450–460. https://doi.org/10.7150/ijms.29935

Afzal M. S. (2020). G proteins: binary switches in health and disease. Central-European journal of immunology, 45(3), 364–367. https://doi.org/10.5114/ceji.2020.101271

Barletta, JA, Nosé, V., & Sadow, PM (2021). Genômica e Epigenômica do Carcinoma Medular de Tireóide: Da Doença Esporádica às Manifestações Familiares. Patologia endócrina, 32 (1), 35-43. https://doi.org/10.1007/s12022-021-09664-3.

Bautista, L., Knippler, C. M., & Ringel, M. D. (2020). p21-Activated Kinases in Thyroid Cancer. Endocrinology, 161(8), bqaa105. https://doi.org/10.1210/endocr/bqaa105.

Bim, LV, Navarro, F., Valente, F., Lima-Junior, JV, Delcelo, R., Dias-da-Silva, MR, Maciel, R., Galante, P., & Cerutti, JM (2019). Cópias retropostas do gene RET: um evento somaticamente adquirido no carcinoma medular de tireoide. BMC medical genomics, 12 (1), 104. https://doi.org/10.1186/s12920-019-0552-1

Cancer Genome Atlas Research Network (2014). Integrated genomic characterization of papillary thyroid carcinoma. Cell, 159(3), 676–690. https://doi.org/10.1016/j.cell.2014.09.050

Cancer Genome Atlas Research Network, Weinstein, JN, Collisson, EA, Mills, GB, Shaw, KR, Ozenberger, BA, Ellrott, K., Shmulevich, I., Sander, C., & Stuart, JM (2013). O projeto de análise Pan-Cancer do Atlas do Genoma do Câncer. Genética da natureza, 45 (10), 1113-1120. https://doi.org/10.1038/ng.2764

Cantara, S., Capezzone, M., Marchisotta, S., Capuano, S., Busonero, G., Toti, P., Di Santo, A., Caruso, G., Carli, A. F., Brilli, L., Montanaro, A., & Pacini, F. (2010). Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. The Journal of clinical endocrinology and metabolism, 95(3), 1365–1369. https://doi.org/10.1210/jc.2009-2103

Celetti, A., Cerrato, A., Merolla, F., Vitagliano, D., Vecchio, G., & Grieco, M. (2004). H4(D10S170), um gene frequentemente rearranjado com RET em carcinomas papilares de tireoide: caracterização funcional. Oncogene, 23 (1), 109-121. https://doi.org/10.1038/sj.onc.1206981

Ceolin, L., Duval, M., Benini, AF, Ferreira, CV, & Maia, AL (2019). Carcinoma medular de tireoide além da cirurgia: avanços, desafios e perspectivas. Câncer endócrino, 26 (9), R499–R518. https://doi.org/10.1530/ERC-18-0574

Cohen, Y., Xing, M., Mambo, E., Guo, Z., Wu, G., Trink, B., Beller, U., Westra, W. H., Ladenson, P. W., & Sidransky, D. (2003). BRAF mutation in papillary thyroid carcinoma. Journal of the National Cancer Institute, 95(8), 625–627. https://doi.org/10.1093/jnci/95.8.625

Colin, I. M., Denef, J. F., Lengelé, B., Many, M. C., & Gérard, A. C. (2013). Recent insights into the cell biology of thyroid angiofollicular units. Endocrine reviews, 34(2), 209–238. https://doi.org/10.1210/er.2012-1015

Cote, G. J., Grubbs, E. G., & Hofmann, M. C. (2015). Thyroid C-Cell Biology and Oncogenic Transformation. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 204, 1–39. https://doi.org/10.1007/978-3-319-22542-5_1

Duh, QY, & Grossman, RF (1995). Fatores de crescimento da tireoide, vias de transdução de sinal e oncogenes. As clínicas cirúrgicas da América do Norte , 75 (3), 421-437. https://doi.org/10.1016/s0039-6109(16)46631-4

Fusco, A., Grieco, M., Santoro, M., Berlingieri, MT, Pilotti, S., Pierotti, MA, Della Porta, G., & Vecchio, G. (1987). Um novo oncogene em carcinomas papilares de tireóide humanos e suas metástases linfonodais. Nature , 328 (6126), 170-172. https://doi.org/10.1038/328170a0

Gerdes AM (2002). Cancergenetic. En oversigt over onkologisk molekylaerbilogi set i relação til det humane genom [Genética do câncer. Uma revisão da biologia molecular oncológica vista em relação ao genoma humano]. Ugeskrift para laeger, 164 (22), 2865–2871.

Carvalho, GA., Graf H. (2005). Anaplastic thyroid carcinoma. Arq Bras Endocrinol Metab, 49 (5).

Haroon Al Rasheed, M. R., & Xu, B. (2019). Molecular Alterations in Thyroid Carcinoma. Surgical pathology clinics, 12(4), 921–930. https://doi.org/10.1016/j.path.2019.08.002.

Hegedüs L. (2004). Clinical practice. The thyroid nodule. The New England journal of medicine, 351(17), 1764–1771. https://doi.org/10.1056/NEJMcp031436.

Hou, P., Liu, D., Shan, Y., Hu, S., Studeman, K., Condouris, S., Wang, Y., Trink, A., El-Naggar, A. K., Tallini, G., Vasko, V., & Xing, M. (2007). Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clinical cancer research: an official journal of the American Association for Cancer Research, 13(4), 1161–1170. https://doi.org/10.1158/1078-0432.CCR-06-1125

Hou, Y., He, X., & Chute, D. J. (2020). Paraganglioma-like medullary thyroid carcinoma: A case report and literature review. Diagnostic cytopathology, 48(6), 559–563. https://doi.org/10.1002/dc.24403

Hussain, MR, Baig, M., Mohamoud, HS, Ulhaq, Z., Hoessli, DC, Khogeer, GS, Al-Sayed, RR, & Al-Aama, JY (2015). Gene BRAF: Dos cânceres humanos às síndromes de desenvolvimento. Revista saudita de ciências biológicas , 22 (4), 359–373. https://doi.org/10.1016/j.sjbs.2014.10.002

Instituto Nacional de Câncer (2022). Câncer de tireoide https://www.inca.gov.br/tipos-de-cancer/cancer-de-tireoide

Kimura ET, Nikiforova MN, Zhu, et al. - High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res, 2003, 63(7):1454-1457.

Kimura, ET., Matsuo, S. E., & Ricarte-Filho, J. C. (2007). TGFbeta, activina e sinalização SMAD em câncer de tiróide [TGFbeta, activin and SMAD signalling in thyroid cancer]. Arquivos brasileiros de endocrinologia e metabologia, 51(5), 683–689. https://doi.org/10.1590/s0004-27302007000500005

Kopnin B. P. (2000). Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis. Biochemistry. Biokhimiia, 65(1), 2–27.

Landa, I., Ibrahimpasic, T., Boucai, L., Sinha, R., Knauf, J. A., Shah, R. H., Dogan, S., Ricarte-Filho, J. C., Krishnamoorthy, G. P., Xu, B., Schultz, N., Berger, M. F., Sander, C., Taylor, B. S., Ghossein, R., Ganly, I., & Fagin, J. A. (2016). Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. The Journal of clinical investigation, 126(3), 1052–1066. https://doi.org/10.1172/JCI85271

Lania, AG, Mantovani, G., & Spada, A. (2006). Mecanismos da doença: Mutações de proteínas G e receptores acoplados à proteína G em doenças endócrinas. Prática clínica da natureza. Endocrinologia e metabolismo, 2 (12), 681-693. https://doi.org/10.1038/ncpendmet0324

Lee, K., Anastasopoulou, C., Chandran, C., & Cassaro, S. (2021). Thyroid Cancer. In StatPearls. StatPearls Publishing.

Li, AY, McCusker, MG, Russo, A., Scilla, KA, Gittens, A., Arensmeyer, K., Mehra, R., Adamo, V., & Rolfo, C. (2019). Fusões RET em tumores sólidos. Revisões de tratamento do câncer, 81, 101911. https://doi.org/10.1016/j.ctrv.2019.101911

Lim, H., Devesa, SS, Sosa, JA, Check, D., & Kitahara, CM (2017). Tendências na incidência e mortalidade por câncer de tireoide nos Estados Unidos, 1974-2013. JAMA, 317 (13), 1338-1348. https://doi.org/10.1001/jama.2017.2719

MACIEL RMB. (2002). Molecular Thyroid Tumorigenesis: Implications for The Clinical Practice. Arq Bras Endocrinol Metab, 46 (4); doi.org/10.1590/S0004-27302002000400009.

Lin, PY, Yu, SL e Yang, PC (2010). MicroRNA no câncer de pulmão. Jornal britânico de câncer, 103 (8), 1144-1148. https://doi.org/10.1038/sj.bjc.6605901.

Moura, MM, Cavaco, BM, & Leite, V. (2015). Proto-oncogene RAS em carcinoma medular de tireoide. Câncer relacionado ao endócrino, 22 (5), R235–R252. https://doi.org/10.1530/ERC-15-0070

Nikiforov YE (2008). Carcinoma de tireóide: vias moleculares e alvos terapêuticos. Patologia moderna: um jornal oficial dos Estados Unidos e da Academia Canadense de Patologia, Inc, 21 Suppl 2 (Suppl 2), S37–S43. https://doi.org/10.1038/modpathol.2008.10

Nikiforov, YE, & Nikiforova, MN (2011). Genética molecular e diagnóstico de câncer de tireóide. Revisões da natureza. Endocrinologia, 7 (10), 569-580. https://doi.org/10.1038/nrendo.2011.142

Nikiforova, MN, Wald, AI, Roy, S., Durso, MB, & Nikiforov, YE (2013). Painel de sequenciamento de próxima geração direcionado (ThyroSeq) para detecção de mutações no câncer de tireoide. O Jornal de endocrinologia clínica e metabolismo, 98 (11), E1852–E1860. https://doi.org/10.1210/jc.2013-2292

Noone, A. M., Cronin, K. A., Altekruse, S. F., Howlader, N., Lewis, D. R., Petkov, V. I., & Penberthy, L. (2017). Cancer Incidence and Survival Trends by Subtype Using Data from the Surveillance Epidemiology and End Results Program, 1992-2013. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 26(4), 632–641. https://doi.org/10.1158/1055-9965.EPI-16-0520

Okafor, C., Hogan, J., Raygada, M., Thomas, B. J., Akshintala, S., Glod, J. W., & Del Rivero, J. (2021). Update on Targeted Therapy in Medullary Thyroid Cancer. Frontiers in endocrinology, 12, 708949. https://doi.org/10.3389/fendo.2021.708949

Park, SY, Kim, HI, Kim, JH, Kim, JS, Oh, YL, Kim, SW, Chung, JH, Jang, HW e Kim, TH (2018). Significado prognóstico da extensão extratireoidiana macroscópica invadindo apenas os músculos da alça no carcinoma diferenciado de tireoide. The British Journal of Surgery, 105 (9), 1155-1162. https://doi.org/10.1002/bjs.10830

Raman, P., & Koenig, R. J. (2014). Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nature reviews. Endocrinology, 10(10), 616–623. https://doi.org/10.1038/nrendo.2014.115

Saini, S., Tulla, K., Maker, A. V., Burman, K. D., & Prabhakar, B. S. (2018). Therapeutic advances in anaplastic thyroid cancer: a current perspective. Molecular cancer, 17(1), 154. https://doi.org/10.1186/s12943-018-0903-0

Shaul, Y. D., & Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochimica et biophysica acta, 1773(8), 1213–1226. https://doi.org/10.1016/j.bbamcr.2006.10.005

Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: a cancer journal for clinicians, 65(1), 5–29. https://doi.org/10.3322/caac.21254

Staubitz, JI, Schad, A., Springer, E., Rajalingam, K., Lang, H., Roth, W., Hartmann, N., & Musholt, TJ (2019). Novos rearranjos envolvendo o gene RET em carcinoma papilífero de tireoide. Genética do câncer, 230, 13-20. https://doi.org/10.1016/j.cancergen.2018.11.002

Hoogen, VD., D. J., Meijer, H., Seidl, M. F., & Govers, F. (2018). The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains. mBio, 9(1), e02119-17. https://doi.org/10.1128/mBio.02119-17

Wells, SA, Jr, Pacini, F., Robinson, BG, & Santoro, M. (2013). Neoplasia endócrina múltipla tipo 2 e carcinoma medular de tireoide familiar: uma atualização. O Jornal de endocrinologia clínica e metabolismo, 98 (8), 3149-3164. https://doi.org/10.1210/jc.2013-1204

Wiseman, S. M., Loree, T. R., Hicks, W. L., Jr, Rigual, N. R., Winston, J. S., Tan, D., Anderson, G. R., & Stoler, D. L. (2003). Anaplastic thyroid cancer evolved from papillary carcinoma: demonstration of anaplastic transformation by means of the inter-simple sequence repeat polymerase chain reaction. Archives of otolaryngology--head & neck surgery, 129(1), 96–100. https://doi.org/10.1001/archotol.129.1.96

Wiseman, S. M., Loree, T. R., Rigual, N. R., Hicks, W. L., Jr, Douglas, W. G., Anderson, G. R., & Stoler, D. L. (2003). Anaplastic transformation of thyroid cancer: review of clinical, pathologic, and molecular evidence provides new insights into disease biology and future therapy. Head & neck, 25(8), 662–670. https://doi.org/10.1002/hed.10277

Yi, H. S., Chang, J. Y., Kim, K. S., & Shong, M. (2017). Oncogenes, mitochondrial metabolism, and quality control in differentiated thyroid cancer. The Korean journal of internal medicine, 32(5), 780–789. https://doi.org/10.3904/kjim.2016.420

Zaballos, M. A., & Santisteban, P. (2017). Key signaling pathways in thyroid cancer. The Journal of endocrinology, 235(2), R43–R61. https://doi.org/10.1530/JOE-17-0266

Published

01/03/2022

How to Cite

GARCIA, A. C. .; CAVALCANTI , T. C. .; COLLAÇO , L. M. .; GRAF, H. Thyroid cancer bios signaling. Research, Society and Development, [S. l.], v. 11, n. 3, p. e41811326619, 2022. DOI: 10.33448/rsd-v11i3.26619. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26619. Acesso em: 16 jun. 2024.

Issue

Section

Health Sciences