Perfil bioquímico e significado clínico de genes da via MAPK/KINASE no diagnóstico de neoplasias de tireoide
DOI:
https://doi.org/10.33448/rsd-v11i3.26671Palavras-chave:
Tireoide; Expressão gênica; Marcador molecular; MAPK/KINASE; Espectroscopia; FTIR.Resumo
As neoplasias da tireoide são os principais tipos de malignidade endócrina, apresentando incidência aumentada nos últimos anos. O diagnóstico de rotina pode apresentar resultados inconclusivos, levando à necessidade de utilização de técnicas adicionais mais precisas, tais como a análise molecular. Portanto, é essencial a busca de marcadores moleculares para o diagnóstico dessas neoplasias e seus diferentes tipos histológicos. O objetivo deste estudo foi identificar marcadores moleculares diagnósticos para carcinoma papilífero de tireoide (CPT) e lesões de bócio. Para isso, a expressão de genes pertencentes à via MAPK/KNASE foi avaliada pela técnica de RT-qPCR. Adicionalmente, perfis bioquímicos completos das amostras foram obtidos por meio da espectroscopia de infravermelho com transformada de Fourier (FTIR). Os resultados do RT-qPCR sugerem que os genes FOS, JUN, MAP2K6, CCNA1, SFN têm o potencial de serem marcadores tumorais de lesões da tireoide, e os genes MAP2K6, CCNA1, SFN têm ainda o potencial de distinguir amostras de CPT de outras lesões de tireoide. Os resultados do FTIR mostraram que as lesões de CPT podem ser diferenciadas de tecidos normais e benignos com 95,83% de eficiência; sendo as alterações nos ácidos nucleicos o principal fator de classificação. No geral, os resultados sugerem o potencial da análise molecular e do FTIR no diagnóstico do câncer de tireoide.
Referências
Ameri, M. et al. (2021). A network-based approach to identify key genes between follicular thyroid cancer and follicular thyroid adenoma. Gene Reports, 23, 101075.
Boudreau, A. et al. (2013). 14-3-3σ stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion. Proceedings of the National Academy of Sciences, 110 (41): E3937-E3944.
Depciuch, A. J. et al. (2018). Spectroscopic analysis of normal and neoplastic (WI-FTC) thyroid tissue, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 18-24.
Elmi, F. et al. (2017). Application of FT-IR spectroscopy on breast cancer serum analysis, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 5 (187): 87-91.
Han, J. et al. (1996). Characterization of the structure and function of a novel MAP kinase kinase (MKK6). Journal of Biology Chemistry. 271(6): 2886-2891.
Hu, J. et al. (2017). Expressions of miRNAs in papillary thyroid carcinoma and their associations with the clinical characteristics of PTC. Cancer Biomarkers, 18 (1): 87-94.
Imaizumi, Y. et al. (2020). Role of the imprinted allele of the CDKN1C gene in mouse neocortical development. Scientific Reports, 10 (1): 1-10.
Ito, Y. et al. (2003). 14-3-3σ possibly plays a constitutive role in papillary carcinoma, but not in follicular tumor of the thyroid. Cancer Letters, 200: 161-166.
Ivanova, M. et al. (2011). Tamoxifen increases nuclear respiratory factor 1 transcription by activating estrogen receptor β and AP‐1 recruitment to adjacent promoter binding sites. The FASEB Journal, 25 (4): 1402-1416.
Jiang, X. et al. (2018). Chemopreventive activity of sulforaphane. Drug design, development and therapy, 12: 2905.
Khaja, A. S. et al. (2013). Cyclin A1 modulates the expression of vascular endothelial growth factor and promotes hormone-dependent growth and angiogenesis of breast cancer. PLoS One, 8 (8): e72210.
Katz, M.; Arrit, I.; & Yarden, Y. (2007). Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochemical Biophysical Acta, 1773 (8): 1161-1176.
Khan, I. et al. (2021). 17-β estradiol rescued immature rat brain against glutamate-induced oxidative stress and neurodegeneration via regulating Nrf2/HO-1 and MAP-kinase signaling pathway. Antioxidants. 10 (6): 892.
Krishna, M.; & Narang, H. (2008). The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cellular and Molecular Life Sciences. 65 (22): 3525-3544.
Kumar, G. S; Page, R & Peti, W. (2021). The interaction of p38 with its upstream kinase MKK6. Protein Science. 4: 908-913.
Lan, X. et al. (2018). Downregulation of long noncoding RNA H19 contributes to the proliferation and migration of papillary thyroid carcinoma. Gene, 646: 98–105.
Lewis, P. D. et al. (2010). Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer, 23 (10): 640.
Li, Q. B. et al. (2005). In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy. World Journal Gastroenterology, 11 (3): 327-330.
Li, X. et al. (2018). TBX3 promotes proliferation of papillary thyroid carcinoma cells through facilitating PRC2-mediated p57 KIP2 repression. Oncogene, 37 (21): 2773-2792.
Li, L. et al. (2018). Characterization of ovarian cancer cells and tissues by Fourier transform infrared spectroscopy. Journal of Ovarian Research, 11 (1): 1-10.
Liu, H. et al. (2017). Comparison of red blood cells from gastric cancer patients and healthy persons using FTIR spectroscopy. Journal of Molecular Structure, 1130: 33-37.
Liu K. et al. (2018). Mutual Stabilization between TRIM9 Short Isoform and MKK6 Potentiates p38 Signaling to Synergistically Suppress Glioblastoma Progression. Cell Reports, 23 (3): 838-851.
Lu, Z. W. et al. (2020). Silencing of PPM1D inhibits cell proliferation and invasion through the p38 MAPK and p53 signaling pathway in papillary thyroid carcinoma. Oncology Repeorts, 43 (3): 783-794.
Martinez-Marin, D. et al. (2017). Accounting for tissue heterogeneity in infrared spectroscopic imaging for accurate diagnosis of thyroid carcinoma subtypes. Vibrational Spectroscopic, 91: 77-82.
Mansour, J. et al. (2018). Prognostic value of lymph node ratio in metastatic papillary thyroid carcinoma. Journal of Laryngological and Otology, 132 (1):8-13.
Mayson, S. E. et al. (2019). Molecular diagnostic evaluation of thyroid nodules. Endocrinology and Metabolism Clinics, 48 (1): 85-97.
Munari, E. et al. (2015). Cyclin A1 expression predicts progression in pT1 urothelial carcinoma of bladder: a tissue microarray study of 149 patients treated by transurethral resection. Histopathology, 66 (2): 262-269.
Parray, A. A et al. (2014). MKK6 is upregulated in human esophageal, stomach, and colon cancers. Cancer Investigation, 8: 416-422.
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. 29, 16–21.
Rasmussen, M. H et al. (2016). miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nature Communications, 7: 12436.
Ren, H. et al. (2010). Reduced stratifin expression can serve as an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Digestive diseases and Sciences, 55 (9): 2552-2560.
Silva, R. M. et al. (2020). ATR-FTIR spectroscopy and CDKN1C gene expression in the prediction of lymph nodes metastases in papillary thyroid carcinoma. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228: 1176-1193.
Siqueira, L. F. S.; & Lima, K. M. G. (2016). A decade (2004 – 2014) of FTIR prostate cancer spectroscopy studies: An overview of recent advancements. Trends in Analytical Chemistry, 82: 208-221.
Sitole, L. et al. (2014). Mid-ATR-FTIR spectroscopic profiling of HIV/AIDS sera for novel systems diagnostics in global health. Omics: a journal of integrative biology, 18 (8): 513-523.
Shiba-Ishii, A. et al. (2015). Stratifin accelerates progression of lung adenocarcinoma at an early stage. Molecular Cancer, 14 (1): 1-6.
Stampone, E. et al. (2018). Genetic and epigenetic control of CDKN1C expression: importance in cell commitment and differentiation, tissue homeostasis and human diseases. International Journal of Molecular Sciences, 19 (4): 1055.
Subbiah, V.; Baik, C. and Kirkwood, J. M. (2020). Clinical Development of BRAF plus MEK Inhibitor Combinations. Trends Cancer, 6 (9): 797-810.
Suntharalingham, J. P. et al. (2019). Analysis of CDKN1C in fetal growth restriction and pregnancy loss. F1000 Research, 8: 90.
Tang, H. et al. (2020). Growth factor receptor bound protein-7 regulates proliferation, cell cycle, and mitochondrial apoptosis of thyroid cancer cells via MAPK/ERK signaling. Molecular Cell Biochemistry, 472: 209-218.
Thiel, G. et al (2021). Immediate-early transcriptional response to insulin receptor stimulation. Biochemical Pharmacology, 192: 114696.
Yu, J. et al. (2020). Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nature Communications, 11(1): 1-10.
Xiao, C. et al. (2019). Expression of activator protein-1 in papillary thyroid carcinoma and its clinical significance. World Journal of Surgical Oncology, 17 (1): 1-5.
Zaballos, M. A. (2017). Key signaling pathways in thyroid cancer. Journal of Endocrinology, 235 (2): R43-R61.
Zeng, X. T. et al. (2007). FTIR spectroscopic explorations of freshly resected thyroid malignant tissues. Guang Pu Xue Yu Guang Pu Fen Xi, 12: 2422-2426.
Zhang, W. et al. (2015). Noninvasive surface detection of papillary thyroid carcinoma by Fourier transform infrared spectroscopy. Chemical Research in Chinese Universities, 31: 198-202.
Zhang, D. et al. (2017). Plasma lncRNA GAS8-AS1 as a Potential Biomarker of Papillary Thyroid Carcinoma in Chinese Patients. International Journal of Endocrinology, 2017: 2645904.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Joyce Nascimento Santos; Raissa Monteiro da Silva; Tanmoy Tapobrata Bhattacharjee; Marco Aurélio Vamondes Kulcsar; Miyuki Uno; Roger Chammas; Renata de Azevedo Canevari

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.