Reuse of rigid polyurethane foam waste in a thermoplastic polyurethane matrix

Authors

DOI:

https://doi.org/10.33448/rsd-v9i3.2695

Keywords:

Rigid Foam Waste; Thermoplastic Polyurethane; Extrusion; Reuse; Thermopressing.

Abstract

Polyurethanes are polymers prepared from the reaction between polyfunctional isocyanates and polyols, containing intramolecular urethane bonds. The thermosetting polyurethane (PUR) is a non-biodegradable polymer, that cannot be reprocessed by melting, so that the waste generated becomes an environmental problem. The objective of this study was to produce and characterize thermoplastic polyurethane (TPU) composites  incorporated with rigid polyurethane particles through  the  extrusion  process,  as  an  alternative  for  the  reuse  of  the  PUR  and improvement of the TPU properties.  Extruded composites with 10%, 20% and 30% in weight    were thermopressed and had their morphological, thermal and mechanical properties analyzed.  The composite with 20% of filler (TPU/PUR20%) presented the best results, with an increase of 117% in the elastic modulus and 79% in the yield stress when compared to the pure matrix (TPU/PUR0%). No additional increment of the mechanical properties was observed to the composite with 30% of PUR  (TPU/PUR30%), probably because of  the  greater  heterogeneity  of  this  composite,  related to  the  difficulty  of dispersion  and  distribution  of  the  high  content  of  the  PUR  particles  in  the  matrix. This study presented a viable alternative for the use and value aggregation of the thermoset polyurethane residue, contributing to minimize environmental impacts and to improve the properties of thermoplastic polyurethane.

References

Bolsoni, E. (2008). Estudo do reaproveitamento e reutilização das espumas rígidas de poliuretano pós-consumo. Tese de Doutorado em Engenharia e Ciência de Materiais, Universidade Federal do Paraná, Paraná, Curitiba. Disponível em: http://www.pipe.ufpr.br/portal/defesas/tese/027.pdf

Brains, P.F. (1969). Polyurethanes Technology. Hoboken: John Wiley & Sons.

Callister, J. R. (2002). Ciência e Engenharia de Materiais – uma Introdução. 5. ed., São Paulo: LTC Editora.

Ecco L. G. (2011). Efeito do surfactante nas propriedades físicoquímicas de blendas TPU/PPy. Dissertação de Mestrado em Ciência e Engenharia de Materiais, Universidade Federal de Santa Catarina, Santa Catarina, Florianópolis. Disponível em: http://www.tede.ufsc.br/teses/PCEM0247-D.pdf

Hepburn, C. (1992). Polyurethane elastomer chemistry. In: Polyurethane Elastomers. Dordrecht: Springer, 29-50.

Herrera, M.; Matuschek, G.; Kettrup, A. (2002). Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polymer degradation and stability,78 (2), 323-331. doi: 10.1016/S0141-3910(02)00181-7

Howard, T. G. (2002). Polyurethane Biodegradation: a review. International Biodeterioration & Biodegradation, 49 (4), 245-252. doi: 10.1016/S0964-8305(02)00051-3

Oertel, G. (1993). Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties. 2ed. New York: Hanser Publishers, 23.

Szycher, M. (1999). Szycher’s Handbook of Polyurethanes. Boca Raton (FL): CRC Press.

Vermette, P. (2001). Biomedical applications of polyurethanes. Gergetown: Landes Bioscience, 273.

Vilar, W. (2004). Química e Tecnologia de Poliuretanos. 3ªed. Rio de Janeiro: Vilar Consultoria.

Wypych, G. (2016). Handbook of polymers. Toronto: ChemTec Publishing.

Zia, K. M.; Bhatti, H. N.; Bhatti, L. A. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and functional polymers, 67(8), 675-692. doi: 10.1016/j.reactfunctpolym.2007.05.004

Published

27/02/2020

How to Cite

CARMO, K. M. do; DA SILVA, M. C.; MORELLI, C. L. Reuse of rigid polyurethane foam waste in a thermoplastic polyurethane matrix. Research, Society and Development, [S. l.], v. 9, n. 3, p. e127932695, 2020. DOI: 10.33448/rsd-v9i3.2695. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2695. Acesso em: 2 jan. 2025.

Issue

Section

Engineerings