Phytochemical investigation and biological activities of extracts obtained from Montrichardia linifera (Arruda) Schott leaves collected in different localities from Piauí coast
DOI:
https://doi.org/10.33448/rsd-v11i4.27231Keywords:
Secondary metabolites; Natural products; Aquatic macrophyte; Plant extract.Abstract
Montrichardia linifera is an aquatic macrophyte widely used by the population, presenting antibacterial, antioxidant, antiplasmodic, insecticidal and antimalarial activities. This study aimed to evaluate the phytochemical composition and biological activities of extracts obtained from M. linifera leaves collected in different locations. Hexanic (HXE), hydroalcoholic (HAE) and methanolic (ME) extracts were prepared from leaves from four collection points in the state of Piauí, Brazil: Porto dos Tatus (PT), Lagoa do Bebedouro (LB), Galego (G) and Morros da Mariana (MM). Qualitative and quantitative phytochemical assays, evaluation of in vitro cytotoxicity against three tumor cell lines (HL-60, HCT-116 and B16-F10), evaluation of antibacterial activity against Escherichia coli and Staphylococcus aureus and analysis of antioxidant potential by DPPH were carried out and ABTS. The extracts showed the presence of alkaloids, organic acids, flavonoids, phenols and tannins, with their presence varying according to the place of collection. The HXE-G sample had the highest percentage of flavonoids. The ME-G and HAE-G samples had the highest levels of phenolic compounds. The HXE-G, HAE-G and ME-G extracts showed a high percentage of inhibition against the three tumor strains tested. HXE-MM had a bacteriostatic effect against both strains of bacteria tested. The samples that showed better antioxidant activity were ME-G and HAE-G. These results demonstrate that the plant has a phytochemical variability, depending on the geographic location and the type of solvent used in the extraction process. Thus, the extracts obtained from M. linifera leaves present a variety of secondary metabolites with potential biological activity.
References
Abdal Dayen, A., Choi, H. Y., Yang, G., Kim, K., Saha, S. K., & Cho, S., (2016). The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms. Nutrients. 8 (9), 581. https://doi.org/10.3390/nu8090581.
Afifi, F. U., & Abu-Dahab, R., (2012). Phytochemical screening and biological activities of Eminium spiculatum (Blume) Kuntze (family Araceae). Nat. Prod. Res. 26. 10.1080/14786419.2011.565558. https://doi.org/10.1080/14786419.2011.565558.
Almeida, M. R. A., Sabino, K. C. C., Leal, I. C. R., & Kuster, R. M., (2009). Avaliação da Atividade Antitumoral de Jacaranda puberula Cham. Anais da 32a Reunião Anual da CBQ. http://sec.sbq.org.br/cdrom/32ra/resumos/T1064-2.pdf
Amarante, C. B. do Müller, A. H., Póvoa, M. M., & Dolabela, M. F., (2011). Estudo fitoquímico biomonitorado pelos ensaios de toxicidade frente à Artemia salina e de atividade antiplasmódica do caule de aninga (Montrichardia linifera). Acta Amaz. 41, 431–434. https://doi.org/10.1590/S0044-59672011000300015.
Amarante, C. B., Muller, R. C. S., Dantas, K. G. F., Alves, C. N., Muller, A. H., & Palheta, D. C., (2010). Composição química e valor nutricional para grandes herbívoros das folhas e frutos de aninga (Montrichardia linifera, Araceae). Acta Amaz. 40, 729-736. https://doi.org/10.1590/S0044-59672010000400013.
Amarante, C. B., Silva, J. C. F., Solano, F. A. R., Nascimento, L. D., Moraes, L. G., Silva, G. F., & Uno, W. S., (2009). Estudo Espectrométrico das Folhas da Aninga (Montrichardia linifera) coletadas à margem do Rio Guamá no campus da UFPA, Belém-PA. Uma contribuição ao estudo químico da família Araceae. Rev. Cien.UFPA.
Atkins, P. W., & Jones, L., (2012). Princípios de química: questionando a vida moderna e o meio ambiente (5a ed.), Ed. Bookman.
Aziz, M. A., (2015). Qualitative phytochemical screening and evaluation of anti-inflammatory, analgesic and antipyretic activities of Microcos paniculata barks and fruits. J. Integr. Med. 13, 173–184. https://doi.org/10.1016/S2095-4964(15)60179-0.
Baptista, A. B., (2017). As bactérias multirresistentes hospitalares e as plantas medicinais. Desafios. 4, 4, 1-2. https://doi.org/10.1016/S2095-4964(15)60179-0.
Barbosa, W. L. R., Quignard, E., Tavares, I. C. C., Pinto, L. N., Oliveira, F. Q., & Oliveira, R. M., (2004). Manual para análise fitoquímica e cromatográfica gráfica de extratos vegetais. Rev. Cien. UFPA.
Barrales-Cureño, H. J., (2015). Pharmacological applications and in vitro biotechnological production of anticancer alkaloids of Catharanthus roseus. Biotecnol. Apl. 32, 1, 1101-1110.
Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology annual review, 11, 127-152. https://doi.org/10.1016/S1387-2656(05)11004-7.
Brandão, G. H. A., Rigo, G., Roque, A. A., Souza, A. C. D., Scopel, M., Nascimento, C. A. O., Tasca, T., Pereira, C. G., & Giordani, R. B , (2017). Extraction of bioactive alkaloids from Melocactus zehntneri using supercritical fluid. J. Supercrit. Fluids. 129. 28-35. https://doi.org/10.1016/j.supflu.2016.12.012
Calixto, J.B., (2019). The role of natural products in modern drug discovery. Anais da An Acad Bras Cienc. 91 (Suppl. 3), 1-7. https://doi.org/10.1590/0001-3765201920190105.
Cardoso, P. H., O’Leary, N., & Salimena, F. R. G., (2018). Flora das cangas da Serra dos Carajás, Pará, Brasil: Verbenaceae. Rodriguésia. 69, 3. https://doi.org/10.1590/2175-7860201869333.
Casanova, L. M., & Costa, S. S., (2017). Synergistic interactions in natural products: therapeutic potential and challenges. Rev. Virtual Quim. 9, 12-17. https://doi.org/10.21577/1984-6835.20170034.
Clinical and Laboratory Standards Institute (CLSI), (2015). Performance Standards for Antimicrobial Susceptibility Testing.
Cole, E. R., Andrade, J.P., Filho, J. F. A., Schmitt, E. F. P., Alves-Araújo, A., Bastida, J., Endringer, D. C., Borges, W. S., & Lacerda, V., (2019). Cytotoxic and Genotoxic Activities of Alkaloids from the Bulbs of Griffinia gardneriana and Habranthus itaobinus (Amaryllidaceae). Anticancer Agents Med Chem. 19, 5, 707-717. https://doi.org/10.2174/1871520619666190118122523.
Costa, J. C. F., & Hoscheid, J., (2018). Perfil fitoquímico e avaliação da atividade antimicrobiana de extratos aquoso e etanólico de folhas de Cecropia pachystachya. Rev. Fitos. 12, 175-185. https://doi.org/10.5935/2446-4775.20180016
Cupersmid, L., Fraga, A. P. R., Abreu, E. S., & Pereira, I. R. O. (2012). Linhaça: Composição química e efeitos biológicos. e-Scientia, 5(2), 33-40. https://revistas.unibh.br/dcbas/article/view/825.
Devi, D. R., & Battu, G. R., (2019). Qualitative phytochemical screening and ftir spectroscopic analysis of grewia tilifolia (vahl) leaf extracts. International Journal of Current Pharmaceutical Research, 100-107. https://doi.org/10.22159/ijcpr.2019v11i4.34936.
Dirar, A. I., Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T., & Devkota, H. P., (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 120, 261–267. https://doi.org/10.1016/j.sajb.2018.07.003.
Fenner, R., Betti, A. H., Mentz, L. A., & Rates, S. M. K., (2006). Plantas utilizadas na medicina popular brasileira com potencial atividade antifúngica. Rev. Bras. Cienc. Farm. 42. https://doi.org/10.1590/S1516-93322006000300007.
Fiorucci, A. R., Barbora, M. H. F., & Gomes, E. T., (2002). Ácidos orgânicos: dos primórdios da química experimental à sua presença em nosso cotidiano. Quim. Nova esc. 15, 6-10. https://repositorio.bc.ufg.br/handle/ri/15850.
Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K., (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compost. Anal. 24, 1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008.
Gawade, B., (2020). FT-IR profile screening of bioactive chemical components in aqueous extract of abrus precatorius linn plant leaf. Innovare Journal of sciences, 8(1), 108-110. https://innovareacademics.in/journals/index.php/ijs/article/view/38512.
Gobbo-Neto, L., & Lopes, N. P., (2007). Plantas medicinais: Fatores de influência no conteúdo de Metabólitos secundários. Quim. Nova. 30, 374-381. https://doi.org/10.1590/S0100-40422007000200026.
Guzzi. A., (2012). Biodiversidade do Delta do Parnaíba: litoral piauiense. Parnaíba: EDUFPI.
Haro, G., Iksen, I., Rumanti, R. M., Marbun, N., Sari, R. P., & Gultom, R. P. J. (2018). Evaluation of antioxidant activity and minerals value from watercress (Nasturtium officinale R. Br.). Rasayan J. Chem. 11, 232-237. https://doi.org/10.7324/RJC.2018.1112011.
Honório, A. C., Quaresma, A. S., Oliveira, C. T., & Loiola, M. I. B., (2019). Flora do Ceará, Brasil: Mikania (Asteraceae: Eupatorieae). Rodriguésia. 70. https://doi.org/10.1590/2175-7860201970003. https://doi.org/10.1590/2175-7860201970003.
Ifie, I., Ifie, B. E., Ibitoye, D. O., Marshall, L. J., & Williamson, G., (2018). Seasonal variation in Hibiscus sabdariffa (Roselle) calyx phytochemical profile, soluble solids and α-glucosidase inhibition. Food Chem. 261, 164-168. https://doi.org/10.1016/j.foodchem.2018.04.052.
Instituto Nacional do Câncer, (2019). Disponível em: < https://www.inca.gov.br/o-que-e-cancer>. Acesso em: 10 de maio de 2020.
Instituto Nacional do Câncer, (2020). Disponível em: <https://www.inca.gov.br/numeros-de-cancer>. Acesso em: 10 de maio de 2020.
Júnior, J. A. S. M., & Macedo, J. P. (2016). A relação do turismo no Delta do Parnaíba com comunidades locais. CULTUR: Revista de Cultura e Turismo, 10(1), 71-88. https://dialnet.unirioja.es/servlet/articulo?codigo=5975454.
Konan, N. A., Lipucopan, N., Diaz, I. E. C., Jacysyn, J. F., Tiba, M., Mendes, J. G. P., Bacchi, E. M., & Spira, B., (2012). Cytotoxicity of cashew flavonoids towards malignant cells lines. Exp. Toxicol. Pathol. 65, 435-440. https://doi.org/10.1016/j.etp.2010.10.010.
Krummenauer, A., Ponzilacqua, B., & Zani, J. L., (2019). Atividade Antibacteriana de extratos naturais sobre agentes causadores de mastite bovina. J. Biol Pharm. Agricult. Manag. 14, 436-449.
Kumar, V., Kumara, V., Lemos, M., Sharma, M., & Shriram, V., (2013a). Antioxidant and DNA damage protecting activities of Eulophia nuda Lindl. Free Rad Antiox. 55-60. https://doi.org/10.1016/j.fra.2013.07.001.
Kumar, V., Kumara, V., Lemos, M., Sharma, M., & Shriram, V. (2013b). Efficacy of Helicteres isola L. against free radicals, lipid peroxidation protein oxidation and DNA damage. J Pharm Res. 620-625. https://doi.org/10.1016/j.jopr.2013.05.017.
Kumar, V., Shriram, V., Bhagat, R., Khare, T., Kapse, S., & Kadoo, N. (2019). Phytochemical profile, anti-oxidant, anti-inflammatory, and antiproliferative activities of Pogostemon deccanensis essential oils. Biotech.31, 2-9. https://doi.org/10.1007/s13205-018-1560-0.
Laulloo, J., Bhowon, M. G., Chua, L. S., & Gaungoo, H. (2018). Phytochemical screening and antioxidant properties of Phyllanthus emblica from Mauritius. Chem. Nat. Compd. 54, 50-55. https://doi.org/10.1007/s10600-018-2257-7.
Lima, C., Andrade, D., Moreira, G., Sousa, A., Leal, A., Figuerêdo, J., Furtado, P., Feitosa, C., Araujo, A., Andrade, I., Miranda, J., Lima, A., Rocha, C., Silva, T., Mengarda, A. C., Moraes, J., & Rocha, J. (2021). Antibacterial, Antibiofilm, and Antischistosomal Activity of Montrichardia linifera (Arruda) Schott (Araceae) Leaf Extracts. Scientia Pharmaceutica, 89(3), 31. https://doi.org/10.3390/scipharm89030031.
Macedo, E. G., Santos Filho, B. G., Potiguara, R. C. V., & Santos, D. S. B., (2005). Anatomia e Arquitetura Foliar de Montrichardia linifera (Arruda) Schott (Araceae) Espécie da Várzea Amazônica. Bol. Mus. Para. Emílio Goeldi. sér. Ciênc. Nat. 1, 19-43. https://repositorio.museu-goeldi.br/handle/mgoeldi/509.
Machado, H., Nagem, T. J., Peters, V. M., Fonseca, C. S., & Oliveira, T. T., (2008). Flavonóides e seu potencial terapêutico. Bol. Centro Biol. Reprod. 27, 33-39. https://periodicos.ufjf.br/index.php/boletimcbr/article/view/17024.
Machado, L.C., Cruz, R. H., Higa, S. S., Silva, T. R. B., Lima, T. C., & Seriani, R., (2020). Aspectos Farmacológicos e Toxicológicos do Alcaloide N, N–Dimetiltriptamina (DMT). Braz. J. Nat. Sci. 3, 259-259. https://doi.org/10.31415/bjns.v3i1.84.
Marques, L.C., (2005). Preparação de extratos vegetais. Jornal Bras. de Fitomedicina. 3, 74-76. https://www.researchgate.net/profile/Luis-Marques-39/publication/266410215_Preparacao_de_extratos_vegetais/links/543ebdac0cf2e76f02243168/Preparacao-de-extratos-vegetais.pdf
Martinez-Perez, C., Ward, C., Cook, G., Mullen, P., McPhail, D., Harrison, D. J., & Langdon, S. P., (2014). Novel flavonoids as anti-cancer agents: mechanisms of action and promise for their potential application in breast cancer. Biochem. Soc. Trans. 42, 1017-1023. https://doi.org/10.1042/BST20140073.
Mattos, G., Camargo, A., Sousa, C.A., & Zeni, A.L.B., (2018). Plantas medicinais e fitoterápicos na Atenção Primária em Saúde: percepção dos profissionais. Ciênc. saúde coletiva. 23, 3735-3744. https://doi.org/10.1590/1413-812320182311.23572016.
Merino, F. J. Z., Oliveira, V. B., Paula, C. S., Cansian, F. C., Souza, A. M., Zuchetto, M., Hirota, B.C.K., Duarte, A.F.S., Kulik, J.D., Miguel, M.D., & Miguel, O.G., (2015). Análise fitoquímica, potencial antioxidante e toxicidade do extrato bruto etanólico e das frações da espécie Senecio westermanii Dusén frente à Artemia salina. Rev. Bras. Pl. Med. 17, 4, 1031-1040. https://doi.org/10.1590/1983-084X/14_137.
Milani, L. I. G., Terra, N. N., Fries, L. L. M., Cichoski, A. J., Rezer, A. P. S., Backers, A. M., & Parodia, C. G., (2012). Atividade antioxidante e antimicrobiana in vitro de extratos de caqui (Diospyros kaki L.) cultivar Rama Forte. Braz. J. Food Technol. 15, 118-124. https://doi.org/10.1590/S1981-67232012005000003.
Miranda, J. A. L., Rocha, J. A., Araújo, K. M., Quelemes, P. V., Mayo, S. J., & Andrade, I. M., (2015). Atividade antibacteriana de extratos de folhas de Montrichardia linifera (Arruda) Schott (Araceae). Rev. Bras. Pl. Med.17, 1142-1149. https://doi.org/10.1590/1983-084X/14_169.
Moore, J., Yousef, M., & Tsiani, E., (2016). Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients. 8, 731. https://doi.org/10.3390/nu8110731.
Moura, L. F. W. G., Silva Neto, J. X., Lopes, T. D. P., Benjamin, S. B., Brito, F. C. R., Magalhães, F. E. A., Florean, E. O. P. T., Sousa, D. O. B., & Guedes, M. I. F., (2019). Ethnobotanic, phytochemical uses and ethnopharmacological profile of genus Cnidoscolus spp.(Euphorbiaceae): A comprehensive overview. Biomedicine & Pharmacotherapy, 109, 1670-1679. https://doi.org/10.1016/j.biopha.2018.10.015.
Naumann, A., Heine, G., & Rauber, R. (2010). Efficient discrimination of oat and pea roots by cluster analysis of Fourier transform infrared (FTIR) spectra. Field Crops Research, 119(1), 78-84. https://doi.org/10.1016/j.fcr.2010.06.017
Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N., (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharm. Sci. 56. https://doi.org/10.1590/s2175-97902019000417129.
Ngo, T. van, Scarlett, C. J., Bowyer, M. C., Ngo, P. D., & Vuong, Q. V., (2017). Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J. Food Qual. https://doi.org/10.1155/2017/9305047.
Pakkirisamy, M., Kalakandan, S. K., & Ravichandran, K., (2017). Phytochemical screening, GC-MS, FT-IR analysis of methanolic extract of Curcuma caesia Roxb (Black Turmeric). Pharmacognosy Journal, 9(6). https://doi.org/10.5530/pj.2017.6.149
Pan, L., Chai, H. B., & Kinghorn, A. D., 2013. Discovery of new anticancer agents from higher plants. Front Biosci (Schol Ed). 142–156. https://doi.org/10.2741/257.
Paraíso, C. M., Santos, S. S., Ogawa, C. Y. L., Sato, F., dos Santos, O. A., & Madrona, G. S. (2020). Hibiscus sabdariffa L. extract: Characterization (FTIR-ATR), storage stability and food application. Emirates Journal of Food and Agriculture, 55-61. https://doi.org/10.9755/ejfa.2020.
Pinheiro, G. L., Silva, C. A., Lima, J. M., Costa, A. L., Saczk, A. A., (2013). Ácidos orgânicos de baixa massa molar em solos e materiais orgânicos. Quim. Nova. 36, 413-418. https://doi.org/10.1590/S0100-40422013000300011.
Pio, I. D. S. L., Lavor, A. L., Damasceno, C. M. D., Menezes, P. M. N., Silva, F. S., & Maia, G. L. A., (2019). Traditional knowledge and uses of medicinal plants by the inhabitants of the islands of the São Francisco River. Brazil and preliminary analysis of Rhaphiodon echinus (Lamiaceae). Braz. J. of Biol. 79, 87-99. https://doi.org/10.1590/1519-6984.177447.
Pires, J., Torres, P. B., Santos, D. Y. A. C., & Chow, F., (2017). Ensaio de microplaca do potencial antioxidante através do método de sequestro do radical livre DPPH para extratos de algas. Inst. Bioc. 1-6. https://doi.org/10.13140/RG.2.2.27450.08640.
Pretti, I. R., da Luz, A. C., Jamal, C. M., & Pimentel Batitucci, M. C., (2018). Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Ind Crops Prod. 121. 241-249. https://doi.org/10.1016/j.indcrop.2018.04.080.
Raju, R., Deepa, A., Vanathi, F., & Vidhya, D. (2016). Screening for phytochemicals and FTIR analysis of Myristica dactyloids fruit extracts. International Journal of Pharmacy and Pharmaceutical Science, 9, 315. https://doi.org/10.22159/ijpps.2017v9i1.11053.
Reid, A. M., Oosthuizen, C. B., Fibrich, B. D., Twilley, D., Lambrechts, I. A., Canha, M. N., Rademan, S., & Lall, N., (2018). Traditional Medicine: The Ancient Roots of Modern Practice. In: Medicinal Plants for Holistic Health and Well-Being. Academic Press. 1-11.
Ren, F., Reilly, K., Kerry, J.P., Gaffney, M., Hossain, M., & Rai, D.K, (2017). Higher Antioxidant Activity, Total Flavonols, and Specific Quercetin Glucosides in Two Different Onion (Allium cepa L.) Varieties Grown under Organic Production: Results from a 6‑Year Field Study. J. Agric. Food Chem. 65, 5122-5132. https://doi.org/10.1021/acs.jafc.7b01352.
Rondón M., Moncayo, S., Cornejo, X., Santos, J., Villalta, D., Siguencia, R., & Duche, J., (2018). Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. J. King Saud Univ. Sci. 30, 500-505. https://doi.org/10.1016/j.jksus.2017.03.009.
Santos, F. N. dos, Oliveira, T. A. de, Lima, K. C. S., Andrade, J. I. A. de, Silva, D. X. da, Amaral, L. do V., Moya, H. D., Ronchi-Teles, B., Matsuura, T., & Nunez, C. V., (2014). Montrichardia linifera (Araceae) biological potential, phytochemical prospection and polyphenol content. Univ. Sci.19, 213–224. https://doi.org/10.11144.
Saraiva, L. C. F., Maia, W. M. N., Leal, F. R., & Maia Filho, C. M. F, (2018). Triagem fitoquímica das folhas de Moringa oleifera. Bol. Inform. Geum. 9, 12. https://revistas.ufpi.br/index.php/geum/article/view/6360.
Schmitt, D. E., Gatiboni, L. C., Orsoletta, D. J. D. B& runetto, G., (2018). Formação de complexos ternários de ácidos orgânicos-Fe-P no crescimento de trigo (Triticum aestivum). R. Bras. Eng. Agríc. Ambiental. 22, 702-706. https://doi.org/10.1590/1807-1929/agriambi.v22n10p702-706.
Silva, J. V., Rosário, D. M., Veiga, A. S. S., Vasconcelos, F., Percário, S., & Dolabela, M. F., (2013). Uma revisão bibliográfica sobre Araceae com foco nos gêneros Pistia. Philodendron e Montrichardia: Aspectos botânicos, fitoquímicos e atividades biológicas. Rev. Fitos 8, 73-160. https://www.arca.fiocruz.br/handle/icict/19214
Soares, M., Welter, L., Kuskoski, E. M., Gonzaga, L., & Fett, R., (2008). Compostos fenólicos e atividade antioxidante da casca de uvas Niágara e Isabel. Rev. Bras. Frutic. 30, 59-64. https://www.scielo.br/j/rbf/a/fWHjn9nb5J4cqc7tzZtZWQK/?format=pdf&lang=pt.
Usberco, J., & Salvador, E., (2006). Química Geral, 12ª.ed., São Paulo. https://doi.org/10.1590/S0100-29452008000100013.
Vieira, G. T., Oliveira, T. T., Monteiro, L. P., Kanashiro, M. M.; Costa, M. R.; Pereira, W. L., (2017). Cytotoxic evaluation of Croton urucurana Baill extract against human leukemic cell lines U937 and THP1. Science and Natura. 39, 512-519. https://doi.org/10.5902/2179460X23281.
Wyk, B. E. V; & Wink. M., (2018). Medicinal plants of the world. CAB International.
Zhang, Z., Teruya, K., Eto, H., & Shirahata, S., (2011). Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways. PloS one. 6. https://doi.org/10.1371/journal.pone.0027441.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Juliana Isis Araújo Pereira; Fernanda Iris Araújo Pereira; Gisele Santos Araújo; João Marcos Antônio Rodrigues; Rodrigo Elisio de Sá; Jessica Maria Teles Souza; Ayslan Batista Barros; Andrea Felinto Moura; Manoel da Paixão Brito; Alyne Rodrigues de Araújo; Leiz Maria Costa Véras; Durcilene Alves da Silva; José Delano Barreto Marinho Filho; Ana Jérsia Araújo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.