Antiretroviral drugs: predicted environmental concentration and ecological risk Assessment in Sewage Treatment Plants in Cubatão, São Paulo, Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27595

Keywords:

Drugs in the environment; Antiretrovirals; Predicted environmental concentration; Ecological Risk.

Abstract

Predictive models have been used worldwide as an important approach to investigate the presence of drugs in aquatic ecosystems, mainly due to the disposal of effluents generated by Sewage Treatment Plants (STP). The objective of this study was to estimate the environmental concentrations and potential ecological risks of fourteen antiretroviral drugs (ADs), which are released in the aquatic ecosystems of Cubatão, through two STPs. The Predicted Environmental Concentration (PEC) was calculated according to the guidelines of the European Medicines Agency (EMEA) and the Ecological Risk Assessment (ERA) was predicted considering three trophic levels: algae, crustaceans and fish. The results indicated that the fourteen ADs (PEC ranges between 0.05 and 20.29 µg/L) exceeded the ecological safety limits established by the EMEA guideline (PEC > 0.01 µg/L). After performing the ERA, the results showed the following trend: (i) 71.43% of the assessments indicated high acute risk for the three trophic levels tested. Regarding chronic toxicity, 57.14% of the evaluations also indicated high risks. Based on the results a prioritization list of the most toxic ADs was created. The final ranking of the most toxic ADs was established as follows: 1st place, Lopinavir and Ritonavir (top priority); Maraviroc (2nd place); Efavirenz, Darunavir, Dolutegravir and Zidovudine (3rd place); Atazanavir, Etravirine and Nevirapine (4th place); Abacavir, Raltegravir and Tenofovir (5th place) and, finally, Lamivudine, which indicated the least environmental concern. The data obtained may provide subsidies for the planning of actions aimed at improving the quality of coastal and marine ecosystems in the country.

References

Benzaken, A. S., Pereira, G. F. M., Costa, L., Tanuri, A., Santos, A. F., & Soares, M. A. (2019). Antiretroviral treatment, government policy and economy of HIV/AIDS in Brazil: is it time for HIV cure in the country? AIDS Research and Therapy, 16(1). https://doi.org/10.1186/s12981-019-0234-2

Brasil. Ministério da Saúde. Departamento de Vigilância, Prevenção e Controle das IST, do HIV/Aids e das Hepatites Virais Protocolo Clínico e Diretrizes Terapêuticas para o Manejo da Infecção pelo HIV em Adultos. Brasília: Ministério da Saúde; 2017. http://www.aids.gov.br/pt-br/pub/2013/protocolo-clinico-e-diretrizes-terapeuticas-para-manejo-da-infeccao-pelo-hiv-em-adultos

CHMP. Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. Doc. Ref. EMEA/CHMP/SWP/4447/00. London, 1 June(2006). http://www.emea.eu.int/pdfs/human/swp/444700en.pdf

Cid, R.S., Roveri, V., Vidal, D.G., Dinis, M.A.P., Cortez, F.S., Salgueiro, F.R., Toma, W., Cesar, A., & Guimarães, L.L (2021). Toxicity of Antiretrovirals on the Sea Urchin Echinometra lucunter and Its Predicted Environmental Concentration in Seawater from Santos Bay (Brazilian Coastal Zone). Resources, 10, 114. https://doi.org/10.3390/resources10110114

EC - European Commission. Technical Guidance Document on Risk Assessment for Existing Substances, Part II; European Commission: Brussels, Belgium, 2003.

Escher, B. I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J., & McArdell, C. S. (2011). Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research, 45(1), 75–92. doi:10.1016/j.watres.2010.08.019

ECHA - European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.10: Characterisation of Dose [Concentration]-Response for Environment; Dictus Publishing: Chisinau, Moldova, 2008.

Jain, S., Kumar, P., Vyas, R. K., Pandit, P., & Dalai, A. K. (2013). Occurrence and Removal of Antiviral Drugs in Environment: A Review. Water, Air, & Soil Pollution, 224(2). doi:10.1007/s11270-012-1410-3

K’oreje, K. O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H., & Demeestere, K. (2016). Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere, 149, 238–244. doi:10.1016/j.chemosphere.2016.01.095

Li, Y., Zhang, L., Ding, J., & Liu, X. (2020). Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals. Journal of Environmental Management, 253, 109732. doi:10.1016/j.jenvman.2019.109732

Mangal, T. D., Meireles, M. V., Pascom, A. R. P., de Almeida Coelho, R., Benzaken, A. S., & Hallett, T. B. (2019). Determinants of survival of people living with HIV/AIDS on antiretroviral therapy in Brazil 2006–2015. BMC Infectious Diseases, 19(1). doi:10.1186/s12879-019-3844-3

Mosekiemang, T. T., Stander, M. A., & de Villiers, A. (2019). Simultaneous quantification of commonly prescribed antiretroviral drugs and their selected metabolites in aqueous environmental samples by direct injection and solid phase extraction liquid chromatography - Tandem mass spectrometry. Chemosphere. doi:10.1016/j.chemosphere.2018.12

Ngumba, E., Gachanja, A., & Tuhkanen, T. (2016). Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Science of The Total Environment, 539, 206–213. doi:10.1016/j.scitotenv.2015.08.1

Nannou, C., Ofrydopoulou, A., Evgenidou, E., Heath, D., Heath, E., & Lambropoulou, D. (2019). Antiviral drugs in aquatic environment and wastewater treatment plants: A review on occurrence, fate, removal and ecotoxicity. Science of The Total Environment, 134322. doi:10.1016/j.scitotenv.2019.134322

Ncube, S., Madikizela, L. M., Chimuka, L., & Nindi, M. M. (2018). Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. Water Research. doi:10.1016/j.watres.2018.08.017

Omotola, E. O., & Olatunji, O. S. (2020). Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS). Heliyon, 6(12), e05787. doi:10.1016/j.heliyon.2020.e0578

Omotola, E. O., Genthe, B., Ndlela, L., & Olatunji, O.S. (2021) Caracterização de Risco Ambiental de uma Lamivudina Antirretroviral (ARV) em Ecossistemas. Int. J. Ambiente. Res. Saúde Pública, 18, 8358. https://doi.org/10.3390/ijerph18168358

Phillips, A. N., Stover, J., Cambiano, V., Nakagawa, F., Jordan, M. R., Pillay, D., Bertagnolio, S. (2017). Impact of HIV Drug Resistance on HIV/AIDS-Associated Mortality, New Infections, and Antiretroviral Therapy Program Costs in Sub–Saharan Africa. The Journal of Infectious Diseases, 215(9), 1362–1365. doi:10.1093/infdis/jix089

Reddy, K., Renuka, N., Kumari, S., & Bux, F. (2021). Algae-mediated processes for the treatment of antiretroviral drugs in wastewater: Prospects and challenges. Chemosphere, 280, 130674. doi:10.1016/j.chemosphere.2021.13

Reis, E. O., Santos, L. V. S., & Lange, L. C. (2021). Prioritization and environmental risk assessment of pharmaceuticals mixtures from Brazilian surface waters. Environmental Pollution, 288, 117803. doi:10.1016/j.envpol.2021.117803

Robson, L., Barnhoorn, I. E. J., & Wagenaar, G. M. (2017). The potential effects of efavirenz on Oreochromis mossambicus after acute exposure. Environmental Toxicology and Pharmacology, 56, 225–232. doi:10.1016/j.etap.2017.09.017

Russo, D., Siciliano, A., Guida, M., Andreozzi, R., Reis, N. M., Li Puma, G., & Marotta, R. (2018). Removal of antiretroviral drugs stavudine and zidovudine in water under UV 254 and UV 254 /H 2 O 2 processes: Quantum yields, kinetics and ecotoxicology assessment. Journal of Hazardous Materials, 349, 195–204. doi:10.1016/j.jhazmat.2018.01.052

SABESP. Companhia de Saneamento Básico do Estado de São Paulo. Tratamentos de Esgotos. 2018. http://site.sabesp.com.br/

Sanderson, H., Johnson, D. J., Reitsma, T., Brain, R. A., Wilson, C. J., & Solomon, K. R. (2004). Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regulatory Toxicology and Pharmacology, 39(2), 158–183. doi:10.1016/j.yrtph.2003.12.006

Schoeman, C., Dlamini, M., & Okonkwo, O. J. (2017). The impact of a Wastewater Treatment Works in Southern Gauteng, South Africa on efavirenz and nevirapine discharges into the aquatic environment. Emerging Contaminants, 3(2), 95–106. doi:10.1016/j.emcon.2017.09.001

UNAIDS. Estatísticas. 2020. https://unaids.org.br/estatisticas/

USEPA - United States Environmental Protection Agency, 2017. Estimation Program Interface Suite (EPI SuiteTM). Class Program. MS-Windows Version 4.11. https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411

Published

25/03/2022

How to Cite

MARZABAL, A. L. de F. .; ROVERI, V.; FREITAS, M. S. de .; TOMA, W.; GUIMARÃES, L. L. . Antiretroviral drugs: predicted environmental concentration and ecological risk Assessment in Sewage Treatment Plants in Cubatão, São Paulo, Brazil . Research, Society and Development, [S. l.], v. 11, n. 4, p. e52111427595, 2022. DOI: 10.33448/rsd-v11i4.27595. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27595. Acesso em: 9 jan. 2025.

Issue

Section

Agrarian and Biological Sciences