Environmental indicators for monitoring soil carbon under different vegetation covers: the case of the southern cerrado of Tocantins

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27638

Keywords:

Matrix of indicators; Organic matter; Environmental degradation.

Abstract

The construction of environmental indicators has allowed improving management models of natural resources through the evaluation of measures adopted and the monitoring of strategic actions to be used in the search for sustainable development. This work aimed at the construction and evaluation of indicators related to changes in carbon behavior due to changes of vegetation cover in the southern cerrado of Tocantins. The methodology adopted was from the OECD (Organization for Economic Cooperation and Development), the Pressure-State-Impact/Effect-Response (PSI/ER) framework, for the construction of a matrix. For the validation of indicators, specific methodologies were used according to technical standards. The proposed matrix considers the following indicators: soil carbon, carbon stocks in humic fractions, labile carbon - C-Labile and carbon stocks in light organic matter - LOM. The use of indicators presented in this work is of great importance for the monitoring of carbon caused by changes in vegetation cover in the southern cerrado of Tocantins, as a subsidy for policies and actions aimed at reducing the impacts of environmental degradation.

References

Filho, R. N Araújo., Freire, M. B. G. dos S., Wilcox, B. P., West, J. B., Freire, F. J. & Marques, F. A. (2018). Recovery of carbon stocks in deforested caatinga dry forest soils requires at least 60 years. Forest Ecology and Management, 407, 210-220.

Assad, E. D. (2019). Sequestro de carbono e mitigação de emissões de gases de efeito estufa pela adoção de sistemas integrados. Embrapa Informática Agropecuária-Capítulo em livro técnico (INFOTECA-E).

Blair, G. J., Lefroy, R. D. B. & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Crop and Pasture Science, 46, 1459-1466.

Bayer, L. B., Batjes, N. H. & Bindraban, P. S. (2010). Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture, Ecosystems and Environment, 137, 47-58.

Bongiorno, G., Bünemann, E. K., Oguejiofor, C. U., Meier, J., Gort, G. & Comans, R. (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38-50.

Bordonal, R. De O., Menandro, L. M. S., Barbosa, L. C., Lal, R., Milori, D. M. B. P. & Kolln, O. T. (2018). Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, 328, 79–90.

Brasil, W. W. F. (2010). O que é desenvolvimento sustentável. WWF Brasil.

Cassol, P. C. (2019). Alterações no carbono orgânico do solo de campo natural submetido ao plantio de Pinus taeda em três idades. Ciência Florestal, 545-558.

Chen, S., Arrouays, D., Angers, D. A., Martin, M. P. & WalteR, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research, 188, 53-58.

Cook, Rachel L., Binkley, Dan. & Stape, Jose Luiz. (2016). Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil. Forest Ecology and Management, 359, 92-98.

Coser, T. R. , Figueiredo, Cícero Célio de., Jovanovic, Boban., Moreira, Túlio Nascimento., Leite, Gilberto Gonçalves., Filho, Sergio Lucio Salomon Cabral., Kato, Eiyti., Malaquias, Juaci Vitória., Marchão, Robélio Leandro. (2018). Short-term buildup of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah. Agricultural systems, 166, 184-195.

Costa, E. M. Da, Silva, H. F. & Ribeiro, P. R. A. (2013). Matéria orgânica do solo e o seu papel na manutenção e produtividade dos sistemas agrícolas. Enciclopédia Biosfera, Centro Científico Conhecer – Goiânia, 9, 1842-1861.

Culman, S. W., Snapp, S. S., Freeman, M. A., Schipanski, M. E., Beniston, J. & Lal, R. et al. (2012). Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction that is Sensitive to Management. Soil Science Society of America Journal, 76, 494-504.

Dantas, M. S., Almeida, N. V. A., Medeiros, I. S. & Silva, M. D. (2017). Diagnóstico da vegetação remanescente de Mata Atlântica e ecossistemas associados em espaço urbano. Journal of Environmental Analysis and Progress, 2, 87-97.

Dias, F. P. M., Hübner, R., Nunes, F. De J., Leandro, W. M. & Xavier, F. A. da S. (2019). Effects of land-use change on chemical attributes of a Ferralsol in Brazilian Cerrado. Catena, 177, 180-188.

Diniz, A. R., Machado, D. L., Pereira, M. G., Balieiro, F. C. & Menezes, C. E. G. (2015). Biomassa, estoque de carbono e de nutrientes em estádios sucessionais da Floresta Atlântica, RJ. Agrária-Revista Brasileira de Ciências Agrárias, 10, 443-451.

Dionísio, J. A., Pimentel, I. C. & Signor, D. (2016). Biomassa microbiana. In: DIONÍSIO, J. A. Guia prático de biologia do solo. Curitiba: SBCS: NEPAR. 47, 78-83.

Fedrigo, J. K. (2020). Atributos microbianos do solo sob pastagens naturais com diferentes intensidades de pastejo. Semiárida, 22, 53-60.

Frazão, L. A. (2014). Soil carbon stocks under oil palm plantations in Bahia State, Brazil. Biomass and bioenergy, 62, 1-7.

Freitas, I. C. Vinhal., Corrêa, G. F., Wendling, B., Bobuľská, L. & Ferreira, A. S. (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological Indicators, 74, 182-190.

Guimarães, M. F. R., Holanda, F. S. R., Da Rocha, I. P., De Araujo Filho, R. N. & Vieira, T. R. S. (2010). Indicadores ambientais para o estudo da erosão marginal no rio são Francisco. Caminhos de Geografia, 11, 34.

Geraei, D. S., Hojati, S., Landi, A. & Cano, A. F. (2016). Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran. Geoderma Regional, 7, 29-37.

Gomes, L. C., Faria, R. M., Souza E. De., Veloso, G. V., Schaefer, C. E. G. R. & Fernandes Filho, E. I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340, 337-350.

Houghton, R. A. (1993). Changes in terrestrial carbon over the last 135 years. Section II. The role of the terrestrial biosphere. The Global Carbon Cycle / edited by Martin Heimann. p. cm. - NATO ASI series. Series I, Global environmental change; vol. 15, Hamburg, Germany. 53, 139-158.

Kooch, Y., Ehsani, S. & Akbarinia, M. (2019). Stoichiometry of microbial indicators shows clearly more soil responses to land cover changes than absolute microbial activities. Ecological Engineering, 131, 99-106.

Kirkby, C. A., Richardson, A. E., Wade, L. J., Conyers, M. & Kirkegaard, J. A. (2016). Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil. PLoS One, 11, 153-198.

Kyoto, Protocolo. Protocolo de Kyoto. (1998). Convención Marco de las Naciones Unidas sobre el Cambio Climático.

Kaschuk, G., Alberton, O. & Hungria, M. (2010). Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biology and Biochemistry, 42, 1-13.

Leeuwen, J. P. V., Djukic, I., Bloem, J., Lehtinen, T., Hemerik, L. & De Ruiter, P. C. (2017). Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European Journal of Soil Biology, 79, 14-20.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J. & Pongratz, J. (2018). Global Carbon Budget 2018. Earth System Science Data, 10. 2141-2194.

Lucena, E. H. L. (2019). Estoques de carbono e nitrogênio em solos de floresta ombrófila densa e cultivados com cana-de-açúcar em Pernambuco e Alagoas. Recife: O Autor. 118.

Luo, Y., Li, Q., Shen, J., Wang, C., Li, B. & Yuan, S. (2019). Effects of agricultural land use change on organic carbon and its labile fractions in the soil profile in an urban agricultural area. Land Degradation & Development, 30, 1875-1885.

Magalhaes, Sulamirtes S. De A., Ramos, Fabricio T. & Weber, Oscarlina L. Dos S. (2016). Carbon stocks of an Oxisol after thirty-eight years under different tillage systems. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 85-91.

Mayer, S., Kölbl, A., Völkel, J. & Kögel-Knabner, I. (2019). Organic matter in temperate cultivated floodplain soils: Light fractions highly contribute to subsoil organic carbon. Geoderma, 337, 679-690.

Melo, A. Vaz de; Taubinger, M.; Santos, V. M.; Cardoso, D. P.; Vale, J. C. Capacidade combinatória de milho para produção de grãos sob níveis de fósforo. Revista de Agricultura Neotropical, Cassilândia-MS, 4, n. 4, 15-25, out./dez. 2017. DOI: 10.32404/rean.v4i4.1666.

Moraes Sá, J. C. De., Tivet, F., Lal, R., Briedis, I., Hartman, D. & .C. & Santos, J. Z. (2014). Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol. Soil and Tillage Research, 136, 38-50.

Nishi, Marcos Hiroshi., Jacovine, Laércio Antônio Gonçalves., Silva, Márcio Lopes da., Valverde, Sebastião Renato., Nogueira, Haroldo de Paiva & Alvarenga, Antônio de Pádua. (2005). Influência dos créditos de carbono na viabilidade financeira de três projetos florestais. R. Árvore, Viçosa-MG, 29, 263-270.

Organization For Economic Cooperation And Development. (1998). Environmental indicators: towards sustainable development, Paris.132.

Organization For Economic Cooperation And Development. (1993). OECD core set of indicators for environmental performance reviews. A synthesis report by the Group on the State of the Environment. Paris. http://www.nssd.net/pdf/gd93179.pdf>.

Oliveira, W. R. D. De., Ramos, M. L. G., Carvalho, A. M. De., Coser, T. R.., Silva, A. M. M.. & Lacerda, M. M. (2016). Dynamics of soil microbiological attributes under integrated production systems, continuous pasture, and native cerrado. Pesquisa Agropecuária Brasileira, 51, 1501-1510.

Pereira, M. G., Loss, A., Beutler, S. J. & Torres, J. L. R. (2010). Carbono, matéria orgânica leve e fósforo remanescente em diferentes sistemas de manejo do solo. Pesquisa Agropecuária Brasileira, 45, 508-514.

Petter, F. A., Lima, L. B. De., Morais, L. A. De., Tavanti, R. F. R., Nunes, M. E. & Freddi, O. S. (2017). Carbon stocks in oxisols under agriculture and forest in the southern Amazon of Brazil. Geoderma Regional, 11, 53-61.

Pnuma-Ciat. M. (1996). Conceptual para el desarrollo y uso de indicadores ambientales y de sustentabilidad para toma de decisiones em Latinoamerica y el Caribe. México. D.F. 42, 14 -16.

Peixoto A. L., Luz J. R. P. & Brito M.A. (2016). Conhecendo a biodiversidade. Brasília: MCTIC, CNPq, PPBio, 18, 196.

Ramesh, T., Bolan, N. S., Kirkham, M. B., Wijesekara, H., Kanchikerimath, M. & Rao, C. S. (2019). Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy, 156, 1-107.

Rossetti, K. V. & Centurion, J.F. (2015). Estoque de carbono e atributos físicos de um Latossolo em consequência sob diferentes manejos. Revista Brasileira de Engenharia Agrícola e Ambiental, 48, 252-258.

Ribeiro, L. F., Holanda, F. S. R. & Araújo Filho, R. N. (2010). Indicadores ambientais para o estudo da contribuição da bioengenharia na sucessão ecológica da Mata Ciliar na margem direita do Rio São Francisco. Caminhos de Geografia, 11, 35-37.

Rubio, C., Rubio, M. C. & Abraham, E. (2018). Poverty Assessment in Degraded Rural Drylands in the Monte Desert, Argentina. An Evaluation Using GIS and Multi-criteria Decision Analysis. Social Indicators Research, 137, 579-603.

Samarão, G. (2007). Biomassa microbiana em amostras umedecidas após secagem ao ar de solos de toposeqüência de pastagens. Ciencia del suelo, 25, 81-87.

Santana, M. Da S., Sampaio, E. V. De S. B., Giongo, V., Menezes, R. S. C., Jesus, K. N. De. & Albuquerque, E. R. G. M. (2019). Carbon and nitrogen stocks of soils under different land uses in Pernambuco state, Brazil. Geoderma Regional, 16, 1-10.

Shao, P., Liang, C., Lynch, L., Xie, H., Bao, X. (2019). Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biology and Biochemistry, 131, 182-190.

Secretaria De Planejamento E Orçamento (SEPLAN). Gerência de indicadores econômicos e sociais (GIES). (2017). Projeto de Desenvolvimento Regional Integrado e Sustentável. Zoneamento Ecológico-Econômico do Estado do Tocantins. Diagnóstico Ecológico-Econômico do Estado do Tocantins. Palmas: Seplan/GIES. 1, 1-522.

Stockmann, Uta et al. (2015). Global soil organic carbon assessment. Global Food Security, 6, 9-16.

Santos, H. G., Jacomine, P. K. T., Dos Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F. & Coelho, M. R. (2018). Sistema Brasileiro de Classificação de Solos. 5. ed., rev. e ampl. − Brasília, DF: Embrapa. 5, 1-588.

Santos, C. A. Dos., Rezende, C. De P., Pinheiro, É. F. M., Pereira, J. M., Alves, B. J. R., Urquiaga, S. (2019). Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma. 337, 394-401.

Tiwari, S., Singh, C., Boudh, S., Rai, P. K., Gupta, V. K. & Singh, J. S. (2019). Land use change: A key ecological disturbance declines soil microbial biomass in dry tropical uplands. Journal of Environmental Management, 242, 1-10.

United Nations Department for Policy Coordination and Sustainable Development & International Center for Tropical Agriculture (1996) Indicators of Sustainable Development - Framework and Methodologies. .https://gopher.un.org/00/esc/cn17/1996-97/indicators/

Vicente L. C., Gama-Rodrigues E. F., Gama-Rodrigues A. C. (2019). Or-ganic carbon within soil aggregates under forestry systems and pasture in a southeast region of Brazil. Catena. 182, 104-139.

Zelarayán, Marcelo., Celentano, Danielle., Oliveira, Elivaldo., Triana, Stefanía., Sodré, Danilo., Mavisoy, Henry Muchavisoy. & Rousseau, Guillaume., (2005). Impacto da degradação sobre o estoque total de carbono de florestas ripárias na Amazônia Oriental, Brasil. Acta Amazonica. 45. 271- 282.

Zhang, J., Wei, Y., Liu, J., Yuan, J., Liang, Y. & Ren, J. (2019). Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: A five-year field experiment. Soil and Tillage Research, 190, 1-9.

Zinn, Y. L., Guerra, A. R., Silva, C. A., Faria, J. A. & Silva, T. A. C. (2014). Soil organic carbon and morphology as affected by pine plantation establishment in Minas Gerais, Brazil. Forest Ecology and Management, 318, 261-269.

Zinn, Y. L., Marrenjo, G. J. & Silva, C. A. (2018). Soil C:N ratios are unresponsive to land use change in Brazil: A comparative analysis. Agriculture, Ecosystems & Environment, 255, 62-72.

Downloads

Published

21/03/2022

How to Cite

MARINHO JUNIOR, J. L.; CASTRO, J. B. de .; LIMA, D. de S.; SANTOS, L. D. V. .; PISCOYA, V. C. .; CUNHA FILHO, M. .; FEITOSA, T. B.; ARAUJO FILHO, R. N. de . Environmental indicators for monitoring soil carbon under different vegetation covers: the case of the southern cerrado of Tocantins. Research, Society and Development, [S. l.], v. 11, n. 4, p. e39911427638, 2022. DOI: 10.33448/rsd-v11i4.27638. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27638. Acesso em: 25 apr. 2024.

Issue

Section

Agrarian and Biological Sciences