Stanozolol induces ventricular dysfunction by decreasing phospholamban phosphorylation in heart tissue of LDLr-/- mice
DOI:
https://doi.org/10.33448/rsd-v11i5.27876Keywords:
Anabolic androgenic steroids; Hemodynamic parameters; Cardiac remodeling; Phospholamban phosphorylation.Abstract
Stanozolol is a steroid that causes lipid deposition in LDLr-/- mice, although the mechanism by which this dyslipidemia results in cardiac dysfunction is little understood. The aim of this study was to evaluate the effect of stanozolol on cardiac contractility and the participation of myocardial phospholamban (pPLB) phosphorylation in an atherosclerosis mouse model. LDL receptor knockout mice (LDLr-/-) were fed a standard chow diet and received weekly subcutaneous injections of either saline (control, C group) or 20 mg/kg stanozolol (S group). After 8 weeks, hemodynamic parameters were assessed in the left ventricle. The heart was collected, weighted for hypertrophy evaluation, and kept in formalin buffer for morphometric analysis (H&E) and collagen quantification (Picrossirius). Protein expression of PLB and its phosphorylated form (p-PLB) in the left ventricle was determined by western blot. We observed that stanozolol treatment favored cardiac hypertrophy and collagen deposition in heart tissue. Also, stanozolol induced left ventricle dysfunction, increasing PBL expression and decreasing the p-PLB/PLB ratio. Altogether, our data showed that stanozolol causes cardiac remodeling and ventricular dysfunction by decreasing PLB phosphorylation in the left ventricle of LDLr-/- mice.
References
Almeida, S. A. de, Claudio, E. R. G., Mengal, V., Brasil, G. A., Merlo, E., Podratz, P. L., … Abreu, G. R. de. (2018). Estrogen Therapy Worsens Cardiac Function and Remodeling and Reverses the Effects of Exercise Training After Myocardial Infarction in Ovariectomized Female Rats. Frontiers in Physiology: Exercise Physiology, 9, 1–11. https://doi.org/10.3389/fphys.2018.01242
Almeida, S. A. De, Claudio, E. R. G., Mengal, V. F., Oliveira, S. G. De, Merlo, E., Podratz, P. L., … de Abreu, G. R. (2014). Exercise Training Reduces Cardiac Dysfunction and Remodeling in Ovariectomized Rats Submitted to Myocardial Infarction. PloS One, 9(12), e115970. https://doi.org/10.1371/journal.pone.0115970
Ammar, E. M., Said, S. A., & Hassan, M. S. (2004). Enhanced vasoconstriction and reduced vasorelaxation induced by testosterone and nandrolone in hypercholesterolemic rabbits, 50, 253–259. https://doi.org/10.1016/j.phrs.2004.03.010
Andrade, Tadeu Uggere de, Haguihara, S. C. G. C., Falsoni, R. M. P., da Silva, C. L., Dubois Filho, D. G., de Souza Andrade Moraes, F., … de Lima, E. M. (2019). Stanozolol promotes lipid deposition in the aorta through an imbalance in inflammatory cytokines and oxidative status in LDLr knockout mice fed a normal diet. Basic and Clinical Pharmacology and Toxicology, 124(4), 360–369. https://doi.org/10.1111/bcpt.13143
Andrade, Tadeu Uggere De, Loiola, L. Z., Merces, S., Alcure, N., Raquel, A., Medeiros, S., … Bissoli, N. S. (2011). Role of the renin – angiotensin system in the nandrolone-decanoate-induced attenuation of the Bezold – Jarisch reflex. Canadian Journal of Physiology and Pharmacology, 897, 891–897. https://doi.org/10.1139/Y11-090
Andrade, Tadeu U, Santos, C. S., Busato, C. W., Medeiros, R. S., Abreu, R., & Moyse, M. R. (2008). Higher Physiological Doses of Nandrolone Decanoate Do Not Influence the Bezold-Jarish Reflex Control of Bradycardia, 39, 27–32. https://doi.org/10.1016/j.arcmed.2007.06.020
Beutel, A., Bergamaschi, T., & Campos, R. R. (2005). Effects of chronic anabolic steroid treatment on tonic and reflex cardiovascular control in male rats. Steroid Biochemistry & Molecular Biology, 93, 43–48. https://doi.org/10.1016/j.jsbmb.2004.11.003
Bozi, L., Maldonado, I., Baldo, M., Silva, M., Moreira, J., Novaes, R., … Natali, A. (2013). Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats. Clinics, 68(4), 549–556. https://doi.org/10.6061/clinics/2013(04)18
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Brasil, G. A., Lima, E. M. De, Nascimento, A. M. do, Caliman, I. F., Medeiros, A. R. S. de, Silva, M. S. B., … Bissoli, N. S. (2015). Nandrolone decanoate induces cardiac and renal remodeling in female rats, without modification in physiological parameters: The role of ANP system. Life Sciences, 137, 65–73. https://doi.org/10.1016/j.lfs.2015.07.005
Chagwon, K., Ahyoung, L., & Roger, J. H. (2013). Altered sarcoplasmic reticulum calcim cycling-targets for heart failure therapy. Nature Reviews Cardiology, 9(12), 717–733. https://doi.org/10.1038/nrcardio.2012.145.Altered
Chaves, E. A., Pereira-Junior, P. P., Fortunato, R. S., Masuda, M. O., Carvalho, A. C. C. de, Carvalho, D. P. de, … Nascimento, J. H. M. (2006). Nandrolone decanoate impairs exercise-induced cardioprotection : Role of antioxidant enzymes. The Journal of Steroid Biochemistry & Molecular Biology, 99, 223–230. https://doi.org/10.1016/j.jsbmb.2006.01.004
Darke, S., Torok, M., & Duflou, J. (2014). Sudden or Unnatural Deaths Involving Anabolic-androgenic Steroids. Journal of Forensic Sciences, 59(4). https://doi.org/10.1111/1556-4029.12424
Davies, C. H., Harding, S. E., & Poole-Wilson, P. A. (1996). Cellular mechanisms of contractile dysfunction in human heart failure. European Heart Journal, 17(2), 189–198. https://doi.org/10.1093/oxfordjournals.eurheartj.a014834
Davis, K. L., Mehlhorn, U., Schertel, E. R., Geissler, H. J., Trevas, D., Laine, G. A., & Allen, S. J. (1999). Variation in Tau, the time constant for isovolumic relaxation, along the left ventricular base-to-apex axis. Basic Research in Cardiology, 94(1), 41–48. https://doi.org/10.1007/s003950050125
De Andrade, Tadeu Uggere, Abreu, G. R., Moysés, M. R., De Melo Cabral, A., & Bissoli, N. S. (2008). Role of cardiac hypertrophy in reducing the sensitivity of cardiopulmonary reflex control of renal sympathetic nerve actvity in spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology, 35(9), 1104–1108. https://doi.org/10.1111/j.1440-1681.2007.04750.x
El-Mas, M. M. (2002). Cyclosporine Adversely Affects Baroreflexes via Inhibition of Testosterone Modulation of Cardiac Vagal Control. Journal of Pharmacology and Experimental Therapeutics, 301(1), 346–354. https://doi.org/10.1124/jpet.301.1.346
El-Mas, M. M., Afify, E. A., Mohy El-Din, M. M., Omar, A. G., & Sharabi, F. M. (2001). Testosterone facilitates the baroreceptor control of reflex bradycardia: Role of cardiac sympathetic and parasympathetic components. Journal of Cardiovascular Pharmacology, 38(5), 754–763. https://doi.org/10.1097/00005344-200111000-00012
Ewart, M. A., Kennedy, S., MacMillan, D., Raja, A. L. N., Watt, I. M., & Currie, S. (2014). Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis. Atherosclerosis, 234(1), 154–161. https://doi.org/10.1016/j.atherosclerosis.2014.02.014
Fernandes, T., Soci, U. P. R., & Oliveira, E. M. (2011). Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Brazilian Journal of Medical and Biological Research, 44(September), 836–847. https://doi.org/10.1590/S0100-879X2011007500112
Fogelberg, M., Björkhem, I., Diczfalusy, U., & Henriksson, P. (1990). Stanozolol and experimental atherosclerosis: Atherosclerotic development and blood lipids during anabolic steroid therapy of New zealand white rabbits. Scandinavian Journal of Clinical and Laboratory Investigation, 50(6), 693–696. https://doi.org/10.3109/00365519009089189
Fontana, K., Oliveira, H. C. F., Leonardo, M. B., Mandarim-de-Lacerda, C. A., & Cruz-Hofling, M. A. da. (2008). Adverse effect of the anabolic-androgenic steroid mesterolone on cardiac remodelling and lipoprotein profile is attenuated by aerobicz exercise training. International Journal of Experimental Pathology, 89(5), 358–366. https://doi.org/10.1111/j.1365-2613.2008.00601.x
Franquni, J. V. M., Nascimento, A. M. do, Lima, E. M. de, Brasil, G. A., Heringer, O. A., Cassaro, K. O. dos S., … Andrade, T. U. de. (2013). Nandrolone decanoate determines cardiac remodelling and injury by an imbalance in cardiac inflammatory cytokines and ACE activity , blunting of the Bezold – Jarisch reflex , resulting in the development of hypertension. Steroids, 78, 379–385.
Garcia, J. A. D., Dos Santos, L., Moura, A. L., Ricardo, K. F. S., Wanschel, A. C. B. A., Shishido, S. M., … Krieger, M. H. (2008). S-nitroso-N-acetylcysteine (SNAC) prevents myocardial alterations in hypercholesterolemic LDL receptor knockout mice by antiinflammatory action. Journal of Cardiovascular Pharmacology, 51(1), 78–85. https://doi.org/10.1097/FJC.0b013e31815c39d4
Gardner, J. D., Brower, G. L., & Janicki, J. S. (2002). Gender differences in cardiac remodeling secondary to chronic volume overload. Journal of Cardiac Failure, 8(2), 101–107. https://doi.org/10.1054/jcaf.2002.32195
Gleason, W. L., & Braunwald, E. (1962). Studies on the first derivative of the ventricular pressure pulse in man. The Journal of Clinical Investigation, 41(1), 80–91. https://doi.org/10.1172/JCI104469
Henning, R. J., Cheng, J., & Levy, M. N. (1989). Vagal stimulation decreases rate of left ventricular relaxation. American Journal of Physiology-Heart and Circulatory Physiology, 256(2), H428–H433. https://doi.org/10.1152/ajpheart.1989.256.2.h428
Henning, R. J., Khalil, I. R., & Levy, M. N. (1990). Vagal stimulation attenuates sympathetic enhancement of left ventricular function. American Journal of Physiology-Heart and Circulatory Physiology, 258(5), H1470–H1475. https://doi.org/10.1152/ajpheart.1990.258.5.h1470
Henning, Robert J, & Levy, M. N. (1991). Effects of autonomic nerve stimulation, asynchrony, and load on dP/dt max and on dP/dt min. American Physiological Society.
Herrington, W., Lacey, B., Sherliker, P., Armitage, J., & Lewington, S. (2016). Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circulation Research, 118(4), 535–546. https://doi.org/10.1161/CIRCRESAHA.115.307611
Huang, B., Wang, S., Qin, D., Boutjdir, M., & El-Sherif, N. (1999). Diminished Basal Phosphorylation Level of Phospholamban in the Postinfarction Remodeled Rat Ventricle. Circulation Research, 85(9), 848–855. https://doi.org/10.1161/01.res.85.9.848
James, P., Tada, M., Chiesit, M., & Carafoli, E. (1989). Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Letters to Nature, 342(November), 0–2.
Junqueira, L. C. U., Bignolas, G., & Brentani, R. R. (1979). Picrosirius Staining Plus Polarization Microscopy, a Specific Method for Collagen Detection in Tissue-Sections. Histochemical Journal, 11(4), 447–455. https://doi.org/10.1007/bf01002772
Kho, C., Lee, A., & Hajjar, R. J. (2012). Altered sarcoplasmic reticulum calcium cycling - Targets for heart failure therapy. Nature Reviews Cardiology, 9(12), 717–733. https://doi.org/10.1038/nrcardio.2012.145
Kicman, A. T. (2008). Pharmacology of anabolic steroids. British Journal of Pharmacology, 17(February), 502–521. https://doi.org/10.1038/bjp.2008.165
Kuhn, C. M. (2002). Anabolic Steroids. Recent Progress in Hormone Research, 411–434.
Larsen, K.-O., Sjaastad, I., Svindland, A., Krobert, K. A., Skjønsberg, O. H., & Christensen, G. (2006). Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice. American Journal of Physiology-Heart and Circulatory Physiology, 291(2), H507–H516. https://doi.org/10.1152/ajpheart.00862.2005
Lee, Y. T., Lin, H. Y., Chan, Y. W. F., Li, K. H. C., To, O. T. L., Yan, B. P., … Tse, G. (2017). Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids in Health and Disease, 16(1), 12. https://doi.org/10.1186/s12944-016-0402-5
Leite-Moreira, A. F., & Gillebert, T. C. (1994). Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation, 90(5), 2481–2491. https://doi.org/10.1161/01.CIR.90.5.2481
Lima, E. M. E. M., Nascimento, A. M. A. M., Brasil, G. A. G. A., Kalil, I. C. I. C., Lenz, D., Endringer, D. C. D. C., … Bissoli, N. S. N. S. (2015). Cardiopulmonary reflex, cardiac cytokines, and nandrolone decanoate: response to resistance training in rats. Canadian Journal of Physiology and Pharmacology, 7(May), 1–7. https://doi.org/10.1139/cjpp-2015-0014
Lindemann, J. P., & Watanabe, A. M. (1985). Muscarinic cholinergic inhibition of ??-adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles. Journal of Biological Chemistry, 260(24), 13122–13129.
Lippi, G., Franchini, M., & Banfi, G. (2011). Biochemistry and Physiology of Anabolic Androgenic Steroids Doping. Mini-Reviews in Medicinal Chemistry, 11, 362–373.
Litwin, S. E., Raya, T. E., Anderson, P. G., Litwin, C. M., Bressler, R., & Goldman, S. (1991). Induction of myocardial hypertrophy after coronary ligation in rats decreases ventricular dilatation and improves systolic function. Circulation, 84(4), 1819–1827. https://doi.org/10.1161/01.CIR.84.4.1819
Liu, P. Y., Death, A. K., & Handelsman, D. J. (2003). Androgens and cardiovascular disease. Endocrine Reviews, 24(3), 313–340. https://doi.org/10.1210/er.2003-0005
Marques-neto, S. R., Ferraz, E. B., Rodrigues, D. C., Njaine, B., Rondinelli, E., Carvalho, A. C. C. de, & Nascimento, J. H. M. (2014). AT1 and Aldosterone Receptors Blockade Prevents the Chronic Effect of Nandrolone on the Exercise-Induced Cardioprotection in Perfused rat Heart Subjected to Ischemia and Reperfusion. Cardiovascular Drugs and Therapy, 28, 125–135. https://doi.org/10.1007/s10557-013-6503-8
Mattiazzi, A., Garay, A., & Cingolani, H. E. (1986). Critical evaluation of isometric indexes of relaxation in rat and cat papillary muscles and toad ventricular strips. Journal of Molecular and Cellular Cardiology, 18(7), 749–758. https://doi.org/10.1016/S0022-2828(86)80946-4
Melo Junior, A. F., Dalpiaz, P. L. M., Sousa, G. J., Oliveira, P. W. C., Birocale, A. M., Andrade, T. U., … Bissoli, N. S. (2018). Nandrolone alter left ventricular contractility and promotes remodelling involving calcium-handling proteins and renin-angiotensin system in male SHR. Life Sciences, 208(May), 239–245. https://doi.org/10.1016/j.lfs.2018.07.041
Mishra, S., Bedja, D., Amuzie, C., Avolio, A., & Chatterjee, S. (2015). Prevention of Cardiac Hypertrophy by the Use of a Glycosphingolipid Synthesis Inhibitor in ApoE−/− Mice. Biochemical and Biophysical Research Communications, 91(2), 165–171. https://doi.org/10.1016/j.chemosphere.2012.12.037.Reactivity
Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., … Turner, M. B. (2016). AHA Statistical Update Heart Disease and Stroke Statistics — 2016 Update A Report From the American Heart Association. Circulation, 133, e38–e360. https://doi.org/10.1161/CIR.0000000000000350
Nascimento, A. M. do, Lima, E. M. de, Brasil, G. A., Caliman, I. F., Silva, J. F. da, Lemos, V. S., … Bissoli, N. S. (2016). Serca2a and Na + /Ca 2 + exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid. Toxicology and Applied Pharmacology, 301, 22–30. https://doi.org/10.1016/j.taap.2016.04.001
Norton, G. R., Trifunovic, B., & Woodiwiss, A. J. (2000). Attenueted β-adrenoceptor-mediated cardiac contractile responses following androgenic steroid administration to sedentary rats. European Journal of Applied Physiology, 81(4), 310–316. https://doi.org/10.1007/s004210050048
Paolo, M. Di, Agozzino, M., Toni, C., Luciani, A. B., Molendini, L., Scaglione, M., … Arbustini, E. (2007). Sudden anabolic steroid abuse-related death in athletes. International Journal of Cardiology, 114, 114–117. https://doi.org/10.1016/j.ijcard.2005.11.033
Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., & Braunwald, E. (1979). Myocardial infarct size and ventricular function in rats. Circ Res, 44(4), 503–512. https://doi.org/10.1161/01.RES.44.4.503
Seto, S.-W., Krishna, S. M., Moran, C. S., Liu, D., & Golledge, J. (2014). Aliskiren limits abdominal aortic aneurysm, ventricular hypertrophy and atherosclerosis in an apolipoprotein-E-deficient mouse model. Clinical Science, 127(2), 123–134. https://doi.org/10.1042/CS20130382
Silva, D., Miranda, A., Silva, D., D`Angelo, L., Rosa, B., Soares, E., … Garcia, J. (2015). Propolis and swimming in the prevention of atherogenesis and left ventricular hypertrophy in hypercholesterolemic mice. Brazilian Journal of Biology, 75(2), 414–422. https://doi.org/10.1590/1519-6984.15313
Simmerman, H. K., & Jones, L. R. (2017). Phospholamban: Protein Structure, Mechanism of Action, and Role in Cardiac Function. Physiological Reviews, 78(4), 921–947. https://doi.org/10.1152/physrev.1998.78.4.921
Smith, P. J. W., Ornatsky, O., Stewart, D. J., Picard, P., Dawood, F., Wen, W.-H., … Monge, J. C. (2000). Effects of Estrogen Replacement on Infarct Size, Cardiac Remodeling, and the Endothelin System After Myocardial Infarction in Ovariectomized Rats. Circulation, 102(24), 2983–2989. https://doi.org/10.1161/01.CIR.102.24.2983
Sutton, M. G. S. J., & Sharpe, N. (2000). Left Ventricular Remodeling After Myocardial Infarction: Pathophysiology and Therapy. Circulation, 101, 2981–2988. https://doi.org/10.1161/01.CIR.101.25.2981
Tanno, A. P., Neves, V. J. das, Rosa, K. T., Cunha, T. S., Giordano, F. C. L., Calil, C. M., … Marcondes, F. K. (2011). Nandrolone and resistance training induce heart remodeling: Role of fetal genes and implications for cardiac pathophysiology. Life Sciences, 89(17–18), 631–637. https://doi.org/10.1016/j.lfs.2011.08.004
Veseli, B. E., Perrotta, P., Meyer, G. R. A. De, Roth, L., Donckt, C. Van der, Martinet, W., & Meyer, G. R. Y. De. (2017). Animal models of atherosclerosis. European Journal of Pharmacology, (April), 1–11. https://doi.org/10.1016/j.ejphar.2017.05.010
Viana Gonçalves, I. C., Cerdeira, C. D., Poletti Camara, E., Dias Garcia, J. A., Ribeiro Pereira Lima Brigagão, M., Bessa Veloso Silva, R., & Bitencourt dos Santos, G. (2017). Tempol improves lipid profile and prevents left ventricular hypertrophy in LDL receptor gene knockout (LDLr-/-) mice on a high-fat diet. Revista Portuguesa de Cardiologia, 36(9), 629–638. https://doi.org/10.1016/j.repc.2017.02.014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Tadeu Uggere de Andrade; Dionisio Dubois Fillho; Cristiane Lyrio da Silva; Mirian de Almeida Silva; Simone Alves de Almeida; Andrews Marques do Nascimento; Nazaré Souza Bissoli; Girlandia Alexandre Brasil; Ewelyne Miranda de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.