Production analysis and operating mechanisms of polymeric solar cells

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.27958

Keywords:

Renewable energies; Polymeric solar cells; P3HT:PCBM; Sustainability.

Abstract

The development of new energy technologies is crucial for climate stability and planet security. The growing energy demand has driven several researches aiming increase the supply of electricity, nationally and globally. The depletion of some energy resources makes it necessary to expand the forms of energy generation, materials and technologies used. Given this scenario, polymeric photovoltaic solar cells offer a potential route for implantation of large-scale solar energy once they enable cost reduction, using materials abundant in nature and low-cost production technologies. Polymeric solar cells, composed of organic materials, can be used both as an alternative in energy production. In this research work, a study was carried out on the production process and working mechanisms of polymeric solar cells. The studied devices were produced by a blade coating method, with active layer composed of hybrid films polymer:fulerene based on poly(3-hexylthiophene-2,5-diyl) (P3HT):[6,6]-phenyl-C61- butyric acid methyl ester (PCBM). The evaluated photovoltaic parameters presented small dispersion values, suggesting that the employed method proved to be efficient in the fabrication of the devices. The energy conversion efficiency of the photovoltaic device with the best performance was estimated to be around 3.12%.

References

Cui, Y., Yao, H., Hong, L., Zhang, T., Tang, Y., Lin, B., Xian, K., Gao, B., An, C., Bi, P., Ma, W. & Hou, J. (2020). Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review, 7, 1239–1246.

Duan, L. P. & Uddin, A. (2020). Progress in Stability of Organic Solar Cells. Advanced Science, 7, 1903259.

Liu, Q., Jiang, Y., Jin, K., Qin, J., Xu, J., Li, W., Xiong, J., Liu, J., Xiao, Z., Sun, K., Yang, S., Zhang, X., Ding, L. (2020). 18% Efficiency Organic Solar Cells. Science Bulletin, 65, 272.

Liu, C., Xiao, C., Xie, C. & Li, W. (2021). Flexible organic solar cells: Materials, large-area fabrication techniques and potential applications. Nano Energy, 89, 106399.

Lourenço Junior, O. D., Ramoni, M. C., Menezes, L. C. W., Bagnis, D. & Roman, L. S. (2020). Células Solares Orgânicas, a Energia que Vem dos Polímeros. Revista Virtual de Química, 12, 583-597

Medeiros, R. R. B., Lima, A. V. N. A., Diniz, G. F., Melo, V. M., Sousa, L. G. M. & Silva, K. C. G. (2021). Performance study of a hybrid photovoltaic/thermal system. Research, Society and Development, 10, e1210716156.

Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H-L., Cao, W. & Chen, W. (2018). Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 361, 1094-1098.

Nelson, J. (2003). The Physics of Solar Cells. Imperial College Press.

Pereira, M. S., Lima, F. A. S, Almeida, R. Q., Martins, J. L. S., Bagnis, D., Barros, E. B., Sombra, A. S. S., Vasconcelos, I. F. (2019). Flexible, large-area organic solar cells with improved performance through incorporation of CoFe2O4 nanoparticles in the active layer. Materials Research, 22, e20190417.

Pereira, M. S. (2017). Application of oxide nanoparticles obtained by proteic sol-gel and mechanical alloying in third generation solar cells. Tese de Doutorado, Engenharia e Ciência de Materiais, Universidade Federal do Ceará – UFC, Fortaleza – CE.

Pereira, M. S., Lima, F. A. S; Ribeiro, T.S., Silva, M. S., Almeida, R. Q., Barros, E. B. & Vasconcelos, I. F. (2017). Application of Fe-doped SnO2 nanoparticles in organic solar cells with enhanced stability. Optical Materials, 64, 548-556.

Servaites, J. D., Ratner, M. A. & Marks, T. J. (2011). Organic solar cells: A new look at traditional models. Energy Environmental Science, 4, 4410.

Soares, G. A., David, T. W., Anizelli, H., Miranda, B., Rodrigues, J., Lopes, P., Martins, J., Cunha, T., Vilaça, R., Kettle, J. & Bagnis, D. (2020). Outdoor performance of organic photovoltaics at two different locations: A comparison of degradation and the effect of condensation. Journal of Renewable and Sustainable Energy, 12, 063502.

Sousa, F. J. L. (2021). Estudo sobre a produção e mecanismos de funcionamento de células solares poliméricas. Monografia, Engenharia Civil, Centro Universitário INTA – UNINTA, Sobral – CE.

Vargas, M. C., Siqueira, J. A. C., Tokura, L. K., Santos, R. F. & Feiber, F. N. (2021). Solar energy available and energy generated in photovoltaic systems in different inclinations and orientations of roofs of buildings. Research, Society and Development, 10(16), e279101623494.

Yan, J. & Saunders, B. R. (2014). Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Advances., 4, 43286.

Yang, F., Huang, Y., Li, Y. & Li, Y. (2021). Large-area flexible organic solar cells. Flexible Electronics, 5, 30.

Published

17/04/2022

How to Cite

SOUSA, F. J. L. de .; CORREIA, L. de Q. .; MARTINS, J. L. da S. .; LIMA, F. A. de S. .; BAGNIS, D. .; VASCONCELOS, I. F. de .; PEREIRA, M. de S. . Production analysis and operating mechanisms of polymeric solar cells. Research, Society and Development, [S. l.], v. 11, n. 5, p. e60011527958, 2022. DOI: 10.33448/rsd-v11i5.27958. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27958. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings