CCl4 systems’ lifetime with Ng (Ng= He, Ne and Ar), O2, D2O and ND3

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28167

Keywords:

LJ; ILJ; Rovibrational energy; Vibration frequency.

Abstract

The systems’ properties involving noble gases have helped a lot in the development of modeling techniques and standard grades for experimental studies. The objective of this work was to calculate the lifetime of molecular systems formed by helium, neon, argon, dioxygen, deuterated water, deuterated ammonia and carbon tetrachloride (He - CCl4, Ne - CCl4, Ar - CCl4, O2 - CCl4, D2O - CCl4 and ND3 - CCl4). For this, it was used Slater's theory, which consists in an absolutely dynamic formulation, with a complete vibrational analysis of the complexes. The first rovibrational energy level (E0,0) and the vibration frequency (ωe) used were obtained via Discrete Variable Representation and Dunham methods, respectively. The results obtained by both Lennard-Jones (LJ) and the Improved Lennard-Jones (ILJ) analytical forms show that all systems are stable, and the lifetime calculated from the ILJ is always shorter when compared to the lifetime provided from LJ. The results of this article will help in the understanding of systems involving noble gases, as well as in the understanding of the complicated interactions between water and molecules of biological interest.

Author Biography

Rhuiago Mendes de Oliveira, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão

Possui graduação em Física pela Universidade Estadual do Piauí (2012), mestrado em Física pela Universidade de Brasília (2014) e doutorado em Física Atômica e Molecular pela Universidade de Brasília(2018). Atualmente é Professor EBBT no Instituto Federal do Maranhão. Tem experiência na área de Física Atômica e Molecular, com ênfase em Interações de Átomos e Moléculas, atuando principalmente nos seguintes temas: Cálculo de estrutura eletrônica de complexos moleculares; Cálculo de propriedades dinâmicas via solução da equação de Schrödinger nuclear e método de Dunham; Ajustes de curvas de energia potencial de sistemas moleculares.

References

Andrianov, I. (1999). Simulations of ultrafast photoinduced wave pakets dinamics in three dimensions. Tese (Doutorado). Universitat Berlin.

Aziz, R. A., & Chen, H. H. (1977). An accurate intermolecular potential for argon.The Journal of Chemical Physics, 67(12), 5719-5726.

Bickes Jr, R. W., & Bernstein, R. B. (1977). The SPF–Dunham expansion for the potential well: A regression model for systematic analysis of differential elastic beam scattering cross sections. The Journal of Chemical Physics, 66(6), 2408-2420.

Chang, T. M., & Dang, L. X. (2008). Computational studies of liquid water and diluted water in carbon tetrachloride. The Journal of Physical Chemistry A, 112(8), 1694-1700.

Chang, T. M., & Dang, L. X. (1996). Molecular dynamics simulations of CCl4–H2O liquid–liquid interface with polarizable potential models. The Journal of chemical physics, 104(17), 6772-6783.

de Oliveira, R. M., Machado de Macedo, L. G., da Cunha, T. F., Pirani, F., & Gargano, R. (2021). A Spectroscopic Validation of the Improved Lennard–Jones Model. Molecules, 26(13), 3906.

de Oliveira, R. M., Roncaratti, L. F., de Macedo, L. G. M., & Gargano, R. (2017). The interaction of CCl4 with Ng (Ng= He, Ne, Ar), O2, D2O and ND3: rovibrational energies, spectroscopic constants and theoretical calculations. Journal of molecular modeling, 23(3), 87.

Dunham, J. L. (1932). The energy levels of a rotating vibrator. Physical Review, 41(6), 721.

Goodnough, J. A., Goodrich, L., & Farrar, T. C. (2007). Dynamics of dilute water in carbon tetrachloride. The Journal of Physical Chemistry A, 111(28), 6146-6150.

Hensel, F. (1998). The liquid–vapour phase transition in fluid metals. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1735), 97-117.

Hensel, F. (1995). The liquid-vapour phase transition in fluid mercury. Advances in Physics, 44(1), 3-19.

Hepburn, J., Scoles, G., & Penco, R. (1975). A simple but reliable method for the prediction of intermolecular potentials. Chemical Physics Letters, 36(4), 451-456.

Israelachvili, J. N. (2015). Intermolecular and surface forces. Academic press.

Jones L. E. 1924. On the determination of molecular fields. —II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106, 463–477.

Kumar, A. (2002). Reliable isotropic dipole properties and dispersion energy coefficients for CCl4. Journal of Molecular Structure: THEOCHEM, 591(1-3), 91-99.

Maitland, G., Rigby, M., Smith, E., Wakeham, W., & Henderson, D. (1983). Intermolecular forces: their origin and determination. Physics Today, 36(4), 57.

Morse, M. D. (1986). Clusters of transition-metal atoms. Chemical Reviews, 86(6), 1049-1109.

Murrell, J. N. (1984). Molecular potential energy functions. J. Wiley.

Olney, T. N., Cann, N. M., Cooper, G., & Brion, C. E. (1997). Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chemical physics, 223(1), 59-98.

Pirani, F., Brizi, S., Roncaratti, L. F., Casavecchia, P., Cappelletti, D., & Vecchiocattivi, F. (2008). Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Physical Chemistry Chemical Physics, 10(36), 5489-5503.

Price, W. S., Ide, H., & Arata, Y. (2000). Translational and rotational motion of isolated water molecules in nitromethane studied using 17 O NMR. The Journal of Chemical Physics, 113(9), 3686-3689.

Roncaratti, L. R. (2009). Quntum efects in molecular scattering experements: Characterization of the interaction in weakly bound complexes. Universita Degli di Perugia.

Slater, N. B. (1939, January). The rates of unimolecular reactions in gases. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 35, No. 1, pp. 56-69). Cambridge University Press.

Smith, K. M., Rulis, A. M., Scoles, G., Aziz, R. A., & Nain, V. (1977). Intermolecular forces in mixtures of helium with the heavier noble gases. The Journal of Chemical Physics, 67(1), 152-163.

Soares Neto, J. J., & Costa, L. S. (1998). Numerical generation of optimized discrete variable representations. Brazilian journal of physics, 28(1), 1-11.

Wolfgang, R. (1970). Energy and chemical reaction. II. Intermediate complexes vs. direct mechanisms. Accounts of Chemical Research, 3(2), 48-54.

Torii, H. (2004). Atomic quadrupolar effect in the methanol–CCl4 and water–CCl4 intermolecular interactions. Chemical physics letters, 393(1-3), 153-158.

Xiang, T. X., & Anderson, B. D. (2006). Conformational structure, dynamics, and solvation energies of small alanine peptides in water and carbon tetrachloride. Journal of pharmaceutical sciences, 95(6), 1269-1287.

Published

01/04/2022

How to Cite

PAULA, M. E. A. dos S. .; MOURA, F. A. G. A. .; OLIVEIRA, R. M. de . CCl4 systems’ lifetime with Ng (Ng= He, Ne and Ar), O2, D2O and ND3. Research, Society and Development, [S. l.], v. 11, n. 5, p. e15011528167, 2022. DOI: 10.33448/rsd-v11i5.28167. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28167. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences