Probiotics dairy products and cancer- a narrative review
DOI:
https://doi.org/10.33448/rsd-v11i5.28221Keywords:
Milk; Cancer; Probiotics; Functional foods.Abstract
Cancer is the main public health problem in the world and is among the four main causes of premature death. Its etiology has a strong association with dietary factors. Based on this information, the production of functional foods has been gaining prominence in the food industry due to the fact that consumers are more aware of the relationship between good nutrition and health, and therefore the demand for foods that, in addition to nourishing, provide benefits, has increased. such as fermented dairy products. The research was carried out in databases such as PubMed, Google Scholar and Scielo, considering articles published in Portuguese, English and Spanish between 2003 and 2022, on the composition and relationship between dairy products and cancer. Fermented dairy products are rich in many highly bioavailable vitamins and minerals and their benefits are associated with the bioactive peptides present in foods. In addition, these products have antioxidant, anticarcinogenic, antimutagenic properties and are excellent matrices for propagation of probiotic bacteria. Given the above, the development of functional dairy foods requires the support of scientific research and must consider consumer expectations, the technological process, appropriate analysis and marketing techniques, and nutritional advantages. More studies are needed to better understand the mechanisms of action and the relationship between dairy products and cancer.
References
Aguilar-Toalá, J. E., Santiago-López, L., Peres, C. M., Peres, C., Garcia, H. S., Vallejo-Cordoba, B., González-Córdova, A. F., & Hernández-Mendoza, A. (2017). Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of Dairy Science, 100(1), 65–75. https://doi.org/10.3168/jds.2016-11846
Altay, F., Karbancioglu-Güler, F., Daskaya-Dikmen, C., & Heperkan, D. (2013). A review on traditional Turkish fermented non-alcoholic beverages: Microbiota, fermentation process and quality characteristics. International Journal of Food Microbiology, 167(1), 44–56. https://doi.org/10.1016/j.ijfoodmicro.2013.06.016
Altonsy, M. O., Andrews, S. C., & Tuohy, K. M. (2010). Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: Mediation by the mitochondrial pathway. International Journal of Food Microbiology, 137(2–3), 190–203. https://doi.org/10.1016/j.ijfoodmicro.2009.11.015
Awaisheh, S. S., Obeidat, M. M., Assaf, A. M., Rahahleh, R. J., & Processing, F. (2016). In vitro cytotoxic activity of probiotic bacterial cell extracts against Caco-2 and HRT-18 colorectal cancer cells. 69, 27–31.
Azam, R., Ghafouri-Fard, S., Tabrizi, M., Modarressi, M. H., Ebrahimzadeh-Vesal, R., Daneshvar, M., Mobasheri, M. B., & Motevaseli, E. (2014). Lactobacillus acidophilus and Lactobacillus crispatus culture supernatants downregulate expression of cancer-testis genes in the MDA-MB-231 cell line. Asian Pacific Journal of Cancer Prevention, 15(10), 4255–4259. https://doi.org/10.7314/APJCP.2014.15.10.4255
Baldwin, C., Millette, M., Oth, D., Ruiz, M. T., Luquet, F. M., & Lacroix, M. (2010). Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutrition and Cancer, 62(3), 371–378. https://doi.org/10.1080/01635580903407197
Balthazar, C. F., Pimentel, T. C., Ferrão, L. L., Almada, C. N., Santillo, A., Albenzio, M., Mollakhalili, N., Mortazavian, A. M., Nascimento, J. S., Silva, M. C., Freitas, M. Q., Sant’Ana, A. S., Granato, D., & Cruz, A. G. (2017). Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Comprehensive Reviews in Food Science and Food Safety, 16(2), 247–262. https://doi.org/10.1111/1541-4337.12250
Barros, V. C. (2021). Uma análise de consumo de alimentos probióticos com estudantes de uma instituição de ensino superior Probiotic products consuming analysis with a university education institution students Análisis del consumo de alimentos probioticos con estudiantes de un. 2021, 1–16.
Boza-Mendez, E., Lopez-Calvo, R., & Cortes-Munoz, M. (2012). Innovative Dairy Products Development Using Probiotics: Challenges and Limitations. Probiotics. https://doi.org/10.5772/50104
Brasil. (2020). Estimativa 2020: incidência de câncer no Brasil | INCA - Instituto Nacional de Câncer. In Instituto Nacional de Câncer José Alencar Gomes da Silva. https://www.inca.gov.br/publicacoes/livros/estimativa-2020-incidencia-de-cancer-no-brasil
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. In CA: A Cancer Journal for Clinicians (Vol. 68, Issue 6, pp. 394–424). https://doi.org/10.3322/caac.21492
Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467–483. https://doi.org/10.1016/j.jfoodeng.2010.12.031
Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health / Types of literature review: considerations of the editors of the Journal of Nursing and Health. Journal of Nursing and Health, 10(5), 1–7. https://doi.org/10.15210/jonah.v10i5.19924
Casarotti, Sabrina N, Carneiro, B. M., & Penna, A. L. B. (2014). Evaluation of the effect of supplementing fermented milk with quinoa flour on probiotic activity. Journal of Dairy Science, 97(10), 6027–6035. https://doi.org/10.3168/jds.2014-8197
Casarotti, Sabrina Neves, & Penna, A. L. B. (2015). Acidification profile, probiotic in vitro gastrointestinal tolerance and viability in fermented milk with fruit flours. International Dairy Journal, 41, 1–6. https://doi.org/10.1016/j.idairyj.2014.08.021
Chakrabarti, S., & Wu, J. (2015). Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro- Pro) promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells. PLoS ONE, 10(2), 1–15. https://doi.org/10.1371/journal.pone.0117492
Chaves-López, C., Serio, A., Grande-Tovar, C. D., Cuervo-Mulet, R., Delgado-Ospina, J., & Paparella, A. (2014). Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage. Comprehensive Reviews in Food Science and Food Safety, 13(5), 1031–1048. https://doi.org/10.1111/1541-4337.12098
Cousin, F. J., Jouan-Lanhouet, S., Dimanche-Boitrel, M. T., Corcos, L., & Jan, G. (2012). Milk fermented by propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS ONE, 7(3), 1–12. https://doi.org/10.1371/journal.pone.0031892
De Moreno De LeBlanc, A., & Perdigón, G. (2005a). Reduction of β-glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell, 29(1), 15–24. https://doi.org/10.1016/j.eurpolymj.2012.10.027
De Moreno De LeBlanc, A., & Perdigón, G. (2005b). Reduction of β-glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell, 29(1), 15–24.
Denipote, F. G., Trindade, E. B. S. D. M., & Burini, R. C. (2010). [Probiotics and prebiotics in primary care for colon cancer]. Arquivos de Gastroenterologia, 47(1), 93–98.
Dubey, V., Ghosh, A. R., Bishayee, K., & Khuda-Bukhsh, A. R. (2016). Appraisal of the anti-cancer potential of probiotic Pediococcus pentosaceus GS4 against colon cancer: In vitro and in vivo approaches. Journal of Functional Foods, 23, 66–79. https://doi.org/10.1016/j.jff.2016.02.032
Fabian, E., Majchrzak, D., Dieminger, B., Meyer, E., & Elmadfa, I. (2008). Influence of probiotic and conventional yoghurt on the status of vitamins B1, B2 and B6 in young healthy women. Annals of Nutrition and Metabolism, 52(1), 29–36. https://doi.org/10.1159/000114408
Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235. https://doi.org/10.1179/2047480615z.000000000329
Filbido, G. S., Siquieri, J. P. A., & Bacarji, A. G. (2019). Perfil do consumidor de alimentos lácteos funcionais em Cuiabá-MT. Revista Principia - Divulgação Científica e Tecnológica Do IFPB, 1(45), 31. https://doi.org/10.18265/1517-03062015v1n45p31-39
Gianotti, L., Morelli, L., Galbiati, F., Rocchetti, S., Coppola, S., Beneduce, A., Gilardini, C., Zonenschain, D., Nespoli, A., & Braga, M. (2010). A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World Journal of Gastroenterology, 16(2), 167–175. https://doi.org/10.3748/wjg.v16.i2.167
Gomes, C. R., Vissotto, F. Z., Fadini, A. L., De Faria, E. V., & Luiz, A. M. (2007). Influência de diferentes agentes de corpo nas características reológicas e sensoriais de chocolates diet em sacarose e light em calorias. Ciencia e Tecnologia de Alimentos, 27(3), 614–623. https://doi.org/10.1590/S0101-20612007000300029
Han, K. J., Lee, N. K., Park, H., & Paik, H. D. (2015). Anticancer and anti-inflammatory activity of probiotic lactococcus lactis nk34. Journal of Microbiology and Biotechnology, 25(10), 1697–1701. https://doi.org/10.4014/jmb.1503.03033
Hoesel, B., & Schmid, J. A. (2013). The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer, 12(1), 86. https://doi.org/10.1186/1476-4598-12-86
Horvat, M., Krebs, B., Potrč, S., Ivanecz, A., & Kompan, L. (2010). Preoperative synbiotic bowel conditioning for elective colorectal surgery. Wiener Klinische Wochenschrift, 122(SUPPL. 2), 26–30. https://doi.org/10.1007/s00508-010-1347-8
Hsieh, C. C., Hernández-Ledesma, B., Fernández-Tomé, S., Weinborn, V., Barile, D., & De Moura Bell, J. M. L. N. (2015). Milk proteins, peptides, and oligosaccharides: Effects against the 21st century disorders. BioMed Research International, 2015. https://doi.org/10.1155/2015/146840
Hu, J., Wang, C., Ye, L., Yang, W., Huang, H., Meng, F., Shi, S., & Ding, Z. (2015). Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. Journal of Biosciences, 40(2), 269–279. https://doi.org/10.1007/s12038-015-9518-4
Hwang, J., Kim, J. chul, Moon, H., Yang, J. yeon, & Kim, M. K. (2017). Determination of sodium contents in traditional fermented foods in Korea. Journal of Food Composition and Analysis, 56, 110–114. https://doi.org/10.1016/j.jfca.2016.11.013
Isazadeh, A., Hajazimian, S., Shadman, B., Safaei, S., Bedoustani, A. B., Chavoshi, R., Shanehbandi, D., Mashayekhi, M., Nahaei, M., & Baradaran, B. (2021). Anti-Cancer Effects of Probiotic Lactobacillus acidophilus for Colorectal Cancer Cell Line Caco-2 through Apoptosis Induction. Pharmaceutical Sciences, 27(2), 262–267. https://doi.org/10.34172/PS.2020.52
Jaiswal, P. K., Goel, A., & Mittal, R. D. (2015). Survivin: A molecular biomarker in cancer. Indian Journal of Medical Research, 142(April), 389–397.
Jauhiainen, T., Pilvi, T., Cheng, Z. J., Kautiainen, H., Müller, D. N., Vapaatalo, H., Korpela, R., & Mervaala, E. (2010). Milk products containing bioactive tripeptides have an antihypertensive effect in double transgenic rats (dTGR) harbouring human renin and human angiotensinogen genes. Journal of Nutrition and Metabolism, 2010(Ang II). https://doi.org/10.1155/2010/287030
Jayashree, Sathyanarayanan, Jayaraman, K., & Kalaichelvan, G. (2010). I Solation , Screening and Characterization of Riboflavin. Recent Research in Science and Technology, 2(1), 83–88.
Kadirareddy, R. H., Ghantavemuri, S., & Devi, U. M. (2016). Kadirareddy RH_Asian Pac J cancer Prev 2016. 17, 3395–3403.
Kim, B., Hong, V. M., Yang, J., Hyun, H., Im, J. J., Hwang, J., Yoon, S., & Kim, J. E. (2016). A review of fermented foods with beneficial effects on brain and cognitive function. Preventive Nutrition and Food Science, 21(4), 297–309. https://doi.org/10.3746/pnf.2016.21.4.297
Kim, S. M., Park, S., & Choue, R. (2010). Effects of fermented milk peptides supplement on blood pressure and vascular function in spontaneously hypertensive rats. Food Science and Biotechnology, 19(5), 1409–1413. https://doi.org/10.1007/s10068-010-0201-0
Korhonen, H., & Pihlanto, A. (2003). Food-derived Bioactive Peptides - Opportunities for Designing Future Foods. Current Pharmaceutical Design, 9(16), 1297–1308. https://doi.org/10.2174/1381612033454892
Korhonen, Hannu, & Pihlanto, A. (2006). Bioactive peptides : Production and functionality. 16, 945–960. https://doi.org/10.1016/j.idairyj.2005.10.012
Larsson, S. C., Bergkvist, L., & Wolk, A. (2005). High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort. American Journal of Clinical Nutrition, 82(4), 894–900. https://doi.org/10.1093/ajcn/82.4.894
Leblanc, J. G., Laiño, J. E., del Valle, M. J., Vannini, V., van Sinderen, D., Taranto, M. P., de Valdez, G. F., de Giori, G. S., & Sesma, F. (2011). B-Group vitamin production by lactic acid bacteria - current knowledge and potential applications. Journal of Applied Microbiology, 111(6), 1297–1309. https://doi.org/10.1111/j.1365-2672.2011.05157.x
Liu, Z. H., Huang, M. J., Zhang, X. W., Wang, L., Huang, N. Q., Peng, H., Lan, P., Peng, J. S., Yang, Z., Xia, Y., Liu, W. J., Yang, J., Qin, H. L., & Wang, J. P. (2013). The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: A double-center and double-blind randomized clinical trial. American Journal of Clinical Nutrition, 97(1), 117–126. https://doi.org/10.3945/ajcn.112.040949
Masood, M. I., Qadir, M. I., Shirazi, J. H., & Khan, I. U. (2011). Beneficial effects of lactic acid bacteria on human beings. Critical Reviews in Microbiology, 37(1), 91–98. https://doi.org/10.3109/1040841X.2010.536522
Matsushita, M., Fujita, K., & Nonomura, N. (2020). Influence of diet and nutrition on prostate cancer. In International Journal of Molecular Sciences (Vol. 21, Issue 4). https://doi.org/10.3390/ijms21041447
Moreno-Montoro, M., Jauregi, P., Navarro-Alarcón, M., Olalla-Herrera, M., Giménez-Martínez, R., Amigo, L., & Miralles, B. (2018). Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks. Analytical and Bioanalytical Chemistry, 410(15), 3597–3606. https://doi.org/10.1007/s00216-018-0983-0
Nakamura, T., Hirota, T., Mizushima, K., Ohki, K., Naito, Y., Yamamoto, N., & Yoshikawa, T. (2013). Milk-derived peptides, val-pro-pro and ile-pro-pro, attenuate atherosclerosis development in apolipoprotein e-deficient mice: A preliminary study. Journal of Medicinal Food, 16(5), 396–403. https://doi.org/10.1089/jmf.2012.2541
Nami, Y., Haghshenas, B., Haghshenas, M., Abdullah, N., & Khosroushahi, A. Y. (2015). The Prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells. Frontiers in Microbiology, 6(NOV), 1–11. https://doi.org/10.3389/fmicb.2015.01317
Nejati, F., Rizzello, C. G., Di Cagno, R., Sheikh-Zeinoddin, M., Diviccaro, A., Minervini, F., & Gobbetti, M. (2013). Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and γ-amino butyric acid (GABA). LWT - Food Science and Technology, 51(1), 183–189. https://doi.org/10.1016/j.lwt.2012.09.017
Nespolo;, C. R., & Brandelli, A. (2010). PRODUCTION OF BACTERIOCIN-LIKE SUBSTANCES BY LACTIC ACID BACTERIA ISOLATED FROM REGIONAL OVINE CHEESE. Brazilian Journal of Microbiology, 41, 1009–1018.
Nogueira, R. B., Pires, A. R. C., Soares, T. M. S., Rodrigues, S. R. de S., Campos5, M. A. M., Toloi5, G. C., & Waisberg, J. (2013). Imunoexpressão das proteínas COX-2 , p53 e caspase-3 em adenoma colorretal e mucosa não neoplásica. ARTIGO ORIGINAL, 11(11), 456–461.
Nogueira, T. R., Caldas, D. R. C., Araújo, C. G. B. de, Silva, M. da C. M. e, Nogueira, N. do N., & Rodrigues, G. P. (2019). Potencial inflamatório da dieta e risco de câncer de mama. Revista Eletrônica Acervo Saúde, 22, e571. https://doi.org/10.25248/reas.e571.2019
Nuraida, L. (2015). A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Science and Human Wellness, 4(2), 47–55. https://doi.org/10.1016/j.fshw.2015.06.001
Ong, L., Henriksson, A., & Shah, N. P. (2006). Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. International Dairy Journal, 16(5), 446–456. https://doi.org/10.1016/j.idairyj.2005.05.008
Pooja, S., Francis, A., Bid, H. K., Kumar, S., Rajender, S., Ramalingam, K., Thangaraj, K., & Konwar, R. (2011). Role of ethnic variations in TNF-α and TNF-β polymorphisms and risk of breast cancer in India. Breast Cancer Research and Treatment, 126(3), 739–747. https://doi.org/10.1007/s10549-010-1175-6
Pourbaferani, M., Modiri, S., Norouzy, A., Maleki, H., Heidari, M., Alidoust, L., Derakhshan, V., Zahiri, H. S., & Noghabi, K. A. (2021). A Newly Characterized Potentially Probiotic Strain, Lactobacillus brevis MK05, and the Toxicity Effects of its Secretory Proteins Against MCF-7 Breast Cancer Cells. Probiotics and Antimicrobial Proteins, 13(4), 982–992. https://doi.org/10.1007/s12602-021-09766-8
Rai, A. K., Sanjukta, S., & Jeyaram, K. (2017). Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Critical Reviews in Food Science and Nutrition, 57(13), 2789–2800. https://doi.org/10.1080/10408398.2015.1068736
Ranadheera, C. S., Vidanarachchi, J. K., Rocha, R. S., Cruz, A. G., & Ajlouni, S. (2017). Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation, 3(4), 1–17. https://doi.org/10.3390/fermentation3040067
Rodríguez-Figueroa, J. C., González-Córdova, A. F., Astiazaran-García, H., & Vallejo-Cordoba, B. (2013). Hypotensive and heart rate-lowering effects in rats receiving milk fermented by specific Lactococcus lactis strains. In British Journal of Nutrition (Vol. 109, Issue 5, pp. 827–833). https://doi.org/10.1017/S0007114512002115
Rosa, L. S., Santos, M. L., Abreu, J. P., Balthazar, C. F., Rocha, R. S., Silva, H. L. A., Esmerino, E. A., Duarte, M. C. K. H., Pimentel, T. C., Freitas, M. Q., Silva, M. C., Cruz, A. G., & Teodoro, A. J. (2020). Antiproliferative and apoptotic effects of probiotic whey dairy beverages in human prostate cell lines. Food Research International, 137(June 2019), 109450. https://doi.org/10.1016/j.foodres.2020.109450
Saber, A., Alipour, B., Faghfoori, Z., & Yari Khosroushahi, A. (2017). Cellular and molecular effects of yeast probiotics on cancer. Critical Reviews in Microbiology, 43(1), 96–115. https://doi.org/10.1080/1040841X.2016.1179622
Şanlier, N., Gökcen, B. B., & Sezgin, A. C. (2019). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506–527. https://doi.org/10.1080/10408398.2017.1383355
Sanz, Y. (2007). Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: A way of selecting improved probiotic strains. International Dairy Journal, 17(11), 1284–1289. https://doi.org/10.1016/j.idairyj.2007.01.016
Shang, F., Jiang, X., Wang, H., Chen, S., Wang, X., Liu, Y., Guo, S., Li, D., Yu, W., Zhao, Z., & Wang, G. (2020). The inhibitory effects of probiotics on colon cancer cells: In vitro and in vivo studies. Journal of Gastrointestinal Oncology, 11(6), 1224–1232. https://doi.org/10.21037/JGO-20-573
Sierra, R. T., Trabazo, R. L., & Velázquez, J. B. (2006). Productos lácteos fermentados. 4(1), 54–66.
SILVA, V. ., & ORLANDELLI, R. C. (2019). Desenvolvimento De Alimentos Funcionais Nos Últimos Anos: Uma Revisão Development. Revista UNINGÁ, 56(2), 182–194.
Siva Kumar, K., Sastry, N., & Mishra, H. P. and V. (2015). Colon Cancer Prevention through Probiotics: An Overview. Journal of Cancer Science & Therapy, 07(03), 81–92. https://doi.org/10.4172/1948-5956.1000329
Stanton, C., Ross, R. P., Fitzgerald, G. F., & Van Sinderen, D. (2005). Fermented functional foods based on probiotics and their biogenic metabolites. Current Opinion in Biotechnology, 16(2), 198–203. https://doi.org/10.1016/j.copbio.2005.02.008
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/CAAC.21660
Thirabunyanon, M., Boonprasom, P., & Niamsup, P. (2009). Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnology Letters, 31(4), 571–576. https://doi.org/10.1007/s10529-008-9902-3
Urbienė, S., & Leskauskaitė, D. (2006). Formation of some organic acids during fermentation of milk. Polish Journal of Food and Nutrition Sciences, 15(3), 277–281. http://journal.pan.olsztyn.pl/FORMATION-OF-SOME-ORGANIC-ACIDS-DURING-FERMENTATION-OF-MILK,97948,0,2.html
Van De Bunt, B., Bron, P. A., Sijtsma, L., De Vos, W. M., & Hugenholtz, J. (2014). Use of non-growing Lactococcus lactis cell suspensions for production of volatile metabolites with direct relevance for flavour formation during dairy fermentations. Microbial Cell Factories, 13(1), 1–9. https://doi.org/10.1186/s12934-014-0176-2
Vinderola, G., Binetti, A., Burns, P., & Reinheimer, J. (2011). Cell viability and functionality of probiotic bacteria in dairy products. Frontiers in Microbiology, 2(MAY), 1–6. https://doi.org/10.3389/fmicb.2011.00070
Yerlikaya, O. (2014). Starter cultures used in probiotic dairy product preparation and popular probiotic dairy drinks. Food Science and Technology, 2014(June), 221–229.
Zhang, J. W., Du, P., Gao, J., Yang, B. R., Fang, W. J., & Ying, C. M. (2012). Preoperative probiotics decrease postoperative infectious complications of colorectal cancer. American Journal of the Medical Sciences, 343(3), 199–205. https://doi.org/10.1097/MAJ.0b013e31823aace6
Zhang, M., Fan, X., Fang, B., Zhu, C., Zhu, J., & Ren, F. (2015). Effects of Lactobacillus salivarius Ren on cancer prevention and intestinal microbiota in 1, 2-dimethylhydrazine-induced rat model. Journal of Microbiology, 53(6), 398–405. https://doi.org/10.1007/s12275-015-5046-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Lana de Souza Rosa; Adriano Gomes da Cruz; Anderson Junger Teodoro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.