Can the use of saline water irrigation reduce the forage deficit in the Brazilian semi arid region?
DOI:
https://doi.org/10.33448/rsd-v11i5.28357Keywords:
Biosaline agriculture; Saline stress; Forage plants; Salinity.Abstract
In the Brazilian semiarid, forage production is limited mainly by high evapotranspiration, variability in the temporal distribution of rainfall, low forage support capacity of native pastures (caatingas) and reduced use of technologies for coexistence with droughts, which configure a region with water deficit for most of the year. In this sense, irrigation can contribute to increase the forage supply to the animals throughout the year, especially in the dry season. However, in much of this territory, groundwater and surface water have high saline levels, which can cause soil salinization and make it difficult for forage plants to grow. Understanding the effects of salts present in irrigation water, soil and plants facilitates the management and mitigation of saline levels in soils. In this sense, the objective of this review was to discuss the processes of formation of saline soils, effects of salts on plants and soil, plant tolerance mechanisms and possible management practices that allow the sustainable use of irrigation with saline water in forage plants.
References
Ali, A. Y. A., Ibrahim, M. E. H., Zhou, G., Nimir, N. E. A., Elsiddig, A. M. I., Jiao, X., Zhu, G., Salih, E. G. I., Suliman, M. S. E. S., & Elradi, S. B. M. (2021). Gibberellic acid and nitrogen efficiently protect early seedlings growth stage from salt stress damage in Sorghum. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84713-9
Bertossi, A. P. A. (2013). Influência da aplicação de águas residuárias sobre a infiltração de água no solo. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 8(5), 188–193.
Bortolini, L., Maucieri, C., & Borin, M. (2018). A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy, 8(2). https://doi.org/10.3390/agronomy8020023
Braga, E. A. S., Aquino, M. D., Mota, F. S. B., & Carvalho Junior, F. H. (2015). Avaliação da salinidade das águas subterrâneas de poços localizados em diferentes cidades do interior do estado de Ceará. Congresso Brasileiro de Engenharia Sanitária e Ambiental.
Cavalcanti, F. R., Santos Lima, J. P. M., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 164(5), 591–600. https://doi.org/10.1016/j.jplph.2006.03.004
Das, P., Manna, I., Sil, P., Bandyopadhyay, M., & Biswas, A. K. (2021). Silicon augments salt tolerance through modulation of polyamine and GABA metabolism in two indica rice (Oryza sativa L.) cultivars. Plant Physiology and Biochemistry, 166, 41–52. https://doi.org/10.1016/j.plaphy.2021.05.030
Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S. S., Kumar, A., Raturi, G., Chakraborty, K., Gupta, O. P., Devanna, B. N., Tripathi, D. K., & Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry, 162, 110–123. https://doi.org/10.1016/j.plaphy.2021.02.023
Dias, N. S., & Blanco, F. F. (2010). Efeitos dos sais na planta. In: Manejo da salinidade na agricultura: estudos básicos e aplicados (pp 130-141).
Eden, S., & Heath, D. (1995). Field manual for water quality sampling (Issue Arizona Water Resources Research Center, Arizona Department Of Environmental Quality). https://wrrc.arizona.edu/sites/wrrc.arizona.edu/files/EngSpan_Field_manual_for_water_quality_sampling.pdf
El Shaer, H. (2010). Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research, 91(1), 3–12.
Elgallal, M., Fletcher, L., & Evans, B. (2016). Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agricultural Water Management, 177, 419–431. https://doi.org/10.1016/j.agwat.2016.08.027
Freitas, W., Lima Filho, M., Silva, V., Agostinho, S., & Piovesan, E. (2018). Geologia da porção centro-leste da bacia São José do Belmonte, Pernambuco, Ne Do Brasil. Estudos Geológicos, 28(1), 3–19. https://doi.org/10.18190/1980-8208/estudosgeologicos.v28n1p3-19
Garcia, G. D. O., Ferreira, P. A., Miranda, G. V., Oliveira, F. G. de, & Santos, D. B. dos. (2007). Índices fisiológicos, crescimento e produção do milho irrigado com água salina. Irriga, 12(3), 307–325. https://doi.org/10.15809/irriga.2007v12n3p307-325
Huang, Liu, Y., Ferreira, J. F. S., Wang, M., Na, J., Huang, J., & Liang, Z. (2022). Long-term combined effects of tillage and rice cultivation with phosphogypsum or farmyard manure on the concentration of salts, minerals, and heavy metals of saline-sodic paddy fields in Northeast China. Soil and Tillage Research, 215. https://doi.org/10.1016/j.still.2021.105222
Huang, R. D. (2018). Research progress on plant tolerance to soil salinity and alkalinity in sorghum. Journal of Integrative Agriculture, 17(4), 739–746. https://doi.org/10.1016/S2095-3119(17)61728-3
Hussain, K., Ashraf, M., & Ashraf, M. Y. (2008). Relationship between growth and ion relation in pearl millet (Pennisetum glaucum (L.) R. Br.) at different growth stages under salt stress. African Journal of Botany, 5(2), 116–120. https://academicjournals.org/journal/AJPS/article-full-textpdf/38A4B412443
IBGE. (2017). Cense Agropecuário 2017. Disponível em: <https://Sidra.Ibge.Gov.Br/Pesquisa/Censo-Agropecuário/Censo-Agropecuário-2017> Acesso em: 18 de março de 2022.
Ibrahim, M. E. H., Ali, A. Y. A., Elsiddig, A. M. I., Zhou, G., Nimir, N. E. A., Agbna, G. H. D., & Zhu, G. (2021). Mitigation effect of biochar on sorghum seedling growth under salinity stress. Pakistan Journal of Botany, 53(2), 387–392. https://doi.org/10.30848/PJB2021-2(21)
Kaloterakis, N., van Delden, S. H., Hartley, S., & De Deyn, G. B. (2021). Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae, 288, 110383. https://doi.org/10.1016/j.scienta.2021.110383
Khorsandi, F., Siadati, S. M. H., & Rastegary, J. (2020). Haloengineering as a vital component of sustainable development in salt-affected ecosystems. Environmental Development, 35. https://doi.org/10.1016/j.envdev.2020.100545
Krishnamurthy, L., Serraj, R., Rai, K. N., Hash, C. T., & Dakheel, A. J. (2007). Identification of pearl millet [Pennisetum glaucum (L.) R. Br.] lines tolerant to soil salinity. Euphytica, 158(1–2), 179–188. https://doi.org/10.1007/s10681-007-9441-3
Kusvuran, A., Bilgici, M., Kusvuran, S., & Nazli, R. I. (2021). The effect of different organic matters on plant growth regulation and nutritional components under salt stress in sweet sorghum [sorghum bicolor (L.) moench.]. Maydica, 66(1).
Leal, L. S. G., Pessoa, L. G. M., Oliveira, J. P., Santos, N. A., Silva, L. F. S., Júnior, G. B., Freire, M. B. G. S., & Souza, E. S. (2020). Do applications of soil conditioner mixtures improve the salt extraction ability of Atriplex nummularia at early growth stage? International Journal of Phytoremediation, 22(5), 482–489. https://doi.org/10.1080/15226514.2019.1678109
Leite, M. L. M. V., Souza, E. S., Tabosa, J. N., & Costa, E. J. B. (2020). A agricultura de vazante na produção de sorgo no Semiárido brasileiro. In: Sorgo. Editor: Tabosa, J.N. Cadernos do Semiárido riquezas & oportunidades / Conselho Regional de Engenharia e Agronomia de Pernambuco. 15(2) (2020). Recife: CREA-PE: Editora UFRPE.
Lima, O. A. L. de. (2010). Estruturas geoelétrica e hidroquímica do sistema aquífero cristalino da bacia do alto rio Curaçá, semi-árido da Bahia. Revista Brasileira de Geofísica, 28(3), 445–461. https://doi.org/10.1590/s0102-261x2010000300009
Maas, E. V., & Hoffman, G. J. (1977). Crop Salt Tolerance - Current Assessment. ASCE J Irrig Drain Div, 103(2), 115–134. https://doi.org/10.1061/jrcea4.0001137
Marengo, J. A. (2008). Vulnerabilidade, impactos e adaptação à mudança do clima no semi-árido do Brasil. Parcerias Estratégicas, 13(27), 149–176. http://seer.cgee.org.br/index.php/parcerias_estrategicas/article/view/329
Medeiros, A. S., Malta Ferreira Maia, S., Santos, T. C., & Araújo Gomes, T. C. (2020). Soil carbon losses in conventional farming systems due to land-use change in the Brazilian semi-arid region. Agriculture, Ecosystems and Environment, 287. https://doi.org/10.1016/j.agee.2019.106690
Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280. https://doi.org/10.1016/j.jenvman.2020.111736
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Muyen, Z., Moore, G. A., & Wrigley, R. J. (2011). Soil salinity and sodicity effects of wastewater irrigation in South East Australia. Agricultural Water Management, 99(1), 33–41. https://doi.org/10.1016/j.agwat.2011.07.021
Nadaf, S. K., Al-Farsi, S. M., Al-Hinai, S. A., Al-Hinai, A. S., Al-Harthy, A. A. S., Al-Khamisi, S. A., & Al-Bakri, A. N. (2018). Potential of forage cactus pear accessions under saline water irrigation in arid areas. Journal of the Professional Association for Cactus Development, 20, 68–81.
Nunes Filho, J., Sousa, A. R., Sá, V. A. L., & Lima, B. P. (2000). Relações entre a concentração de íons e a salinidade de águas subterrâneas e superficiais, visando à irrigação, no sertão de Pernambuco. Revista Brasileira de Engenharia Agrícola e Ambiental, 4(2), 189–193. https://doi.org/10.1590/s1415-43662000000200010
Oliveira, F. A., Medeiros, J. F., Alves, R. C., Linhares, P. S. F., Medeiros, A. M. A., & Oliveira, M. K. T. de. (2014). Interação entre salinidade da água de irrigação e adubação nitrogenada na cultura da berinjela. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(5), 480–486. https://doi.org/10.1590/s1415-43662014000500003
Pedrotti, A., Chagas, R. M., Ramos, V. C., Nascimento, A. P., Prata, A. A. T. L., & Santos, P. B. (2015). Causas e consequências do processo de salinização dos solos. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 19(2), 1308–1324.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria, Brasil: Núcleo de Tecnologia
Educacional da Universidade Federal de Santa Maria.
Pessoa, L. G. M., Freire, M. B. G. S., Santos, R. L., Freire, F. J., Santos, P. R., & Miranda, M. F. A. (2019a). Saline water irrigation in semiarid region: II - effects on growth and nutritional status of onions. Australian Journal of Crop Science, 13(7), 1177–1182. https://doi.org/10.21475/ajcs.19.13.07.p1687
Pessoa, L. G. M., Freire, M. B. G., Araújo Filho, J. C., Santos, P. R., & Miranda, M. F. A., Freire, F. J. (2019b). Characterization and Classification of Halomorphic Soils in the Semiarid Region of Northeastern Brazil. Journal of Agricultural Science, 11(4), 405. https://doi.org/10.5539/jas.v11n4p405
Queiroz, M. G., Silva, T. G. F., Zolnier, S., Silva, S. M. S., Souza, C. A. A., & Carvalho, H. F.S. (2018). Relações hídrico-econômicas da palma forrageira cultivada em ambiente semiárido. Irriga, 1(01), 141. https://doi.org/10.15809/irriga.2016v1n01p141-154
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (Dept. of Agriculture, Washington (ed.); Agricultur).
Sá, C. S. B., Shiosaki, R. K., Santos, A. M., & Campos, M. A. S. (2021). Salinization causes abrupt reduction in soil nematode abundance in the Caatinga area of the Submedio San Francisco Valley, Brazilian semiarid region. Pedobiologia, 85–86. https://doi.org/10.1016/j.pedobi.2021.150729
Santos, R. H. S., Dias, M. S., Silva, F. A., Santos, J. P. O., Santos, S. C., Reis, L. S., & Tavares, C. L. (2020). Matéria orgânica como atenuante da salinidade da água de irrigação na cultura do milho. Colloquium Agrariae, 16(3), 84–93. https://doi.org/10.5747/10.5747/ca.2020.v16.n2.a374
Silva, C. C., Menezes, A. S., Aragão, M. A., Pinheiro Neto, L. G., Moreira, F. J. C., & Sampaio, G. M. (2021). Initial growthof forage cactus varieties under different water salinity levels. Irriga, 26(1), 55–64.
Silva, J. L. A., Medeiros, J. F., Alves, S. S. V., Oliveira, F. A., Silva Junior, M. J., & Nascimento, I. B. (2014). Uso de águas salinas como alternativa na irrigação e produção de forragem no semiárido nordestino. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(suppl), 66–72. https://doi.org/10.1590/1807-1929/agriambi.v18nsupps66-s72
Silva, J. R. I., Jardim, A. M. R. F., Barroso Neto, J., Leite, M. L. M. V., & Teixeira, V. I. (2018). Estresse salino como desafio para produção de plantas forrageiras. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 11(3). https://doi.org/10.5935/paet.v11.n3.13
Silva Júnior, L. G. A., Gheyi, H. R., & Medeiros, J. F. (1999). Composição química de águas do cristalino do Nordeste brasileiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 3(1), 11–17. https://doi.org/10.1590/1807-1929/agriambi.v3n1p11-17
Simões, V. J. L. P, Leite, M. L. M. V., Lucena, L. R. R., Silva, J. R. I., Izidro, J. L. P. S., Souza, E. S. (2022). Use of biostimulants in millet as strategies for tolerance to salinity of irrigation water. Acta Scientiarum. Technology, 44, e59126. DOI: 10.4025/actascitechnol.v44i1.59126
Singh, G., Mavi, M. S., Choudhary, O. P., Gupta, N., & Singh, Y. (2021). Rice straw biochar application to soil irrigated with saline water in a cotton-wheat system improves crop performance and soil functionality in north-west India. Journal of Environmental Management, 295. https://doi.org/10.1016/j.jenvman.2021.113277
Souza, M. C. M. R., Menezes, A. S., Costa, R. S., Amorim, A. V., Lacerda, C. F., & Ribeiro, M. S. S. (2017). Tolerância à salinidade e qualidade de mudas de noni sob diferentes ambientes e matéria orgânica. Revista Brasileira de Agricultura Irrigada, 11(7), 2052–2062. https://doi.org/10.7127/rbai.v11n700682
Souza, R., E., Freire, M. B. G. S., Nascimento, C. W. A., Montenegro, A. A. A., Freire, F. J., & Melo, H. F. (2011). Fitoextração de sais pela Atriplex nummularia lindl. sob estresse hídrico em solo salino sódico. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(5), 477–483. https://doi.org/10.1590/s1415-43662011000500007
Souza, R., Hartzell, S., Feng, X., Antonino, A. C. D., Souza, E. S., Menezes, R. C. S., & Porporato, A. (2020). Optimal management of cattle grazing in a seasonally dry tropical forest ecosystem under rainfall fluctuations. Journal of Hydrology, 588. https://doi.org/10.1016/j.jhydrol.2020.125102
Sudene. (2017). SUPERINTENDÊNCIA DO DESENVOLVIMENTO DO NORDESTE. Delimitação do semiárido. Recife: Sudene. Disponível em: <https://www.gov.br/sudene/pt-br>. Acesso em: 18 de março de 2022.
Tabosa, J. N., Colaço, W., Reis, O. V., Simplício, J. B., Carvalho, H. W. L., & Dias, F. M. (2007). Sorghum genotypes evaluation under salinity levels and gamma ray doses. Revista Brasileira de Milho e Sorgo, 6(3), 339–350. https://doi.org/10.18512/1980-6477/rbms.v6n3p339-350
Wang, Z., Pu, H., Shan, S., Zhang, P., Li, J., Song, H., & Xu, X. (2021). Melatonin enhanced chilling tolerance and alleviated peel browning of banana fruit under low temperature storage. Postharvest Biology and Technology, 179(April), 111571. https://doi.org/10.1016/j.postharvbio.2021.111571
Werber, J. R., Deshmukh, A., & Elimelech, M. (2017). Can batch or semi-batch processes save energy in reverse-osmosis desalination? Desalination, 402, 109–122. https://doi.org/10.1016/j.desal.2016.09.028
Yousaf, M. T. Bin, Nawaz, M. F., Zia ur Rehman, M., Gul, S., Yasin, G., Rizwan, M., & Ali, S. (2021). Effect of three different types of biochars on eco-physiological response of important agroforestry tree species under salt stress. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2021.1901849
Zhang, F., Wang, Y., Liu, C., Chen, F., Ge, H., Tian, F., Yang, T., Ma, K., & Zhang, Y. (2019). Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety, 170, 436–445. https://doi.org/10.1016/j.ecoenv.2018.11.084
Zhang, Z., Liu, H., Liu, X., Chen, Y., Lu, Y., Shen, M., Dang, K., Zhao, Y., Dong, Y., Li, Q., & Li, J. (2021). Organic fertilizer enhances rice growth in severe saline–alkali soil by increasing soil bacterial diversity. Soil Use and Management. https://doi.org/10.1111/sum.12711
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 José Orlando Nunes da Silva; João Pedro Alves de Souza Santos; Kaique Renan da Silva Salvador; Renan Matheus Cordeiro Leite; Rhaiana Oliveira de Aviz; Nágila Sabrina Guedes da Silva; Erison Martins Amaral; Mauricio Luiz de Mello Vieira Leite
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.