Cashel Nut Shell Liquid (CNSL)-based antioxidant synthesis through electrolysis of hydroquinone

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28636

Keywords:

Antioxidants; Biodiesel; Reação eletrolítica; Hidroquinona.

Abstract

Energy is considered a strategic issue for a country and the proportion of its use has always been directly associated with industrial development. With the discovery of oil at the beginning of the 19th century, the industrialization process was intensified even more, causing an intense modification of the space occupied by man. But the impending shortage, the generation of energy through fossil fuels such as oil, cannot indefinitely supply the energy required by the world's population. In this context, biodiesel emerges as a promising biofuel substitute for fossil fuels derived from oilseeds or animal fats composed of alkyl esters that can totally or partially replace diesel. However, it contains a significant amount of unsaturated fatty acid and is susceptible to heat-mediated oxidative degradation, especially in the presence of oxygen, which can negatively affect the stability of biodiesel. phenolic compounds submitted to the electrochemical reaction of biodiesel obtained from soybean oil, through the electrolytic reaction, structural changes were sought to improve the technical antioxidant activity of LCN, using methanol and hydroquinone as solvent and as electrolyte. The LCCHQ was the product of this reaction whose antioxidant efficiency as an additive for biodiesel was measured by the "Schaal Oven Storage Stability Test" - accelerated oxidation method and later analyzed by molecular absorption spectroscopy in the UV region (240 to 300 nm) and rancimat. The antioxidant activity results of LCCHQ were satisfactory in retarding the progress of oxidation when compared to CNSL in all technical tests.

Author Biography

Joabe Lima Araújo, Universidade de Brasília

Department of Genetics and Morphology, University of Brasília - UnB

References

Albuquerque, A. D. R. (2010). Autoxidação de ésteres metílicos de ácidos graxos: estudo teórico-experimental.

Araújo, S. V., Luna, F. M. T., Rola Jr, E. M., Azevedo, D. C., & Cavalcante Jr, C. L. (2009). A rapid method for evaluation of the oxidation stability of castor oil FAME: influence of antioxidant type and concentration. Fuel Processing Technology, 90(10), 1272-1277.

Carrijo, R. M. C., & Romero, J. R. (2000). Oxidações catalíticas e eletrocatalíticas de substratos orgânicos. O cério como oxidante. Química Nova, 23, 331-337.

Castro, A. G. D. Otimização de reator a leito fixo para a produção de biodiesel, utilizando análise termogravimétrica e viscosimétrica. 80f. Dissertação (Chemistry Master degree at Universidade Federal do Piauí), Teresina, 2008.

Corma, A., Abd Hamid, S. B., Iborra, S., & Velty, A. (2005). Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. Journal of Catalysis, 234(2), 340-347.

Dabdoub, M. J., Bronzel, J. L., & Rampin, M. A. (2009). Biodiesel: visão crítica do status atual e perspectivas na academia e na indústria. Química Nova, 32, 776-792.

Dantas, M. B., Albuquerque, A. R., Barros, A. K., Rodrigues Filho, M. G., Antoniosi Filho, N. R., Sinfrônio, F. S. M., ... & Souza, A. G. (2011). Evaluation of the oxidative stability of corn biodiesel. Fuel, 90(2), 773-778.

de Carvalho, L. M., Abreu, W. C. D., Lima, J. R. D. O., Oliveira, J. E. D., Matos, J. M. E. D., de Moura, C. V., & Moura, E. M. D. (2013). Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends. Journal of the Brazilian Chemical Society, 24(4), 550-557.

de Oliveira Lima, J. R., da Silva, R. B., de Moura, E. M., & de Moura, C. V. R. (2008). Biodiesel of tucum oil, synthesized by methanolic and ethanolic routes. Fuel, 87(8-9), 1718-1723.

de Oliveira Lima, J. R., Ghani, Y. A., da Silva, R. B., Batista, F. M. C., Bini, R. A., Varanda, L. C., & de Oliveira, J. E. (2012). Strontium zirconate heterogeneous catalyst for biodiesel production: Synthesis, characterization and catalytic activity evaluation. Applied Catalysis A: General, 445, 76-82.

Dunn, R. O. (2005). Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Processing Technology, 86(10), 1071-1085.

Ferrari, R. A., & Souza, W. L. D. (2009). Avaliação da estabilidade oxidativa de biodiesel de óleo de girassol com antioxidantes. Química Nova, 32(1), 106-111.

Figueiredo, F. C. (2009). Obtenção de polímeros de LCC para aplicação como antioxidante de biodiesel de soja (Master's thesis, Universidade Federal do Rio Grande do Norte).

Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of bioscience and bioengineering, 92(5), 405-416.

Goodrum, J. W. (2002). Volatility and boiling points of biodiesel from vegetable oils and tallow. Biomass and Bioenergy, 22(3), 205-211.

Jain, S., & Sharma, M. P. (2010). Stability of biodiesel and its blends: a review. Renewable and sustainable energy reviews, 14(2), 667-678.

Knothe, G., & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84(9), 1059-1065.

Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology advances, 28(4), 500-518.

Lima, J. R. D. O., Silva, R. B. D., Silva, C. C. M. D., Santos, L. S. S. D., Santos Jr, J. R. D., Moura, E. M., & Moura, C. V. R. D. (2007). Biodiesel de babaçu (Orbignya sp.) obtido por via etanólica. Quimica nova, 30(3), 600-603.

Lôbo, I. P., Ferreira, S. L. C., & Cruz, R. S. D. (2009). Biodiesel: parâmetros de qualidade e métodos analíticos. Química nova, 32(6), 1596-1608.

Luo, M., Zhang, R. Y., Zheng, Z., Wang, J. L., & Ji, J. B. (2012). Impact of some natural derivatives on the oxidative stability of soybean oil based biodiesel. Journal of the Brazilian Chemical Society, 23, 241-246.

Manahan, S. (2017). Environmental chemistry. CRC press.

Mazzetto, S. E., Lomonaco, D., & Mele, G. (2009). Óleo da castanha de caju: oportunidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. Química Nova, 32, 732-741.

Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and sustainable energy reviews, 10(3), 248-268.

Mello, F. O., Paulillo, L. F., & Vian, C. E. (2007). O biodiesel no Brasil: panorama, perspectivas e desafios. Informações Econômicas, 37(1), 28-40.

Mittelbach, M. (1996). Diesel fuel derived from vegetable oils, VI: Specifications and quality control of biodiesel. Bioresource technology, 56(1), 7-11.

MME - MINISTÉRIO DE MINAS E ENERGIA (2008). Resolução ANP n°07 de 19 março 2008. Estabelece a especificação de biodiesel. Revogou a Resolução ANP n°42 de 24/11/04 Agência Nacional de Petróleo, Brasília. http://www.biodiesel.gov.br/docs/resolução_07.pdf

Parente, E. D. S. (2003). Biodiesel: uma aventura tecnológica num país engraçado. tecbio, 68.

Phani Kumar, P., Paramashivappa, R., Vithayathil, P. J., Subba Rao, P. V., & Srinivasa Rao, A. (2002). Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid. Journal of Agricultural and Food chemistry, 50(16), 4705-4708.

Pinto, A. C., Guarieiro, L. L., Rezende, M. J., Ribeiro, N. M., Torres, E. A., Lopes, W. A., & Andrade, J. B. D. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16, 1313-1330.

Ramos, L. P., Domingos, A. K., Kucek, K. T., & Wilhelm, H. M. Biodiesel: Um projeto de sustentabilidade econômica e sócio-ambiental para o Brasil. Biotecnologia: Ciência e Desenvolvimento 2003, 31, 28.

Rios, M. A. D. S., Santiago, S. N., Lopes, A. A. S., & Mazzetto, S. E. (2010). Antioxidative activity of 5-n-pentadecyl-2-tert-butylphenol stabilizers in mineral lubricant oil. Energy & Fuels, 24(5), 3285-3291.

Rios, M. A. S. (2008). Síntese e Aplicabilidade de Antioxidantes derivados do Cardanol hidrogenado. Universidade Federal do Ceará, Ceará.

Rodrigues, F. H. A., Feitosa, J., Ricardo, N. M., França, F. C. F. D., & Carioca, J. O. B. (2006). Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1, 4-polyisoprene. Journal of the Brazilian Chemical Society, 17(2), 265-271.

Santos, N. A., Damasceno, S. S., de Araújo, P. H., Marques, V. C., Rosenhaim, R., Fernandes Jr, V. J., & Souza, A. G. (2011). Caffeic acid: an efficient antioxidant for soybean biodiesel contaminated with metals. Energy & fuels, 25(9), 4190-4194.

Sharma, Y. C., & Singh, B. (2009). Development of biodiesel: current scenario. Renewable and sustainable energy reviews, 13(6-7), 1646-1651.

Sun‐Waterhouse, D., Thakorlal, J., & Zhou, J. (2011). Effects of added phenolics on the storage stability of avocado and coconut oils. International journal of food science & technology, 46(8), 1575-1585.

Tepe, B., & Sokmen, A. (2007). Screening of the antioxidative properties and total phenolic contents of three endemic Tanacetum subspecies from Turkish flora. Bioresource Technology, 98(16), 3076-3079.

Ticianelli, E. A. (1998). Eletroquímica: Princípios e Aplicações. 17. Edusp.

Torii, S.; “Electroorganic Synthesis Methods and Aplication”; Part I: Oxidations, Kodansha Ltd.; Tokio, 1985.

Tuner, H., & Korkmaz, M. (2007). Radiostability of butylated hydroxytoluene (BHT): An ESR study. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258(2), 388-394.

Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production—current state of the art and challenges. Journal of Industrial Microbiology and Biotechnology, 35(5), 421.

Vichi, F. M., & Mansor, M. T. C. (2009). Energia, meio ambiente e economia: o Brasil no contexto mundial. Química Nova, 32(3), 757-767.

Published

13/04/2022

How to Cite

SILVA, R. B. da .; ARAÚJO, J. L.; PASSOS, I. N. G.; LIMA, J. R. de O.; SOUZA, J. S. N. de .; CALDAS, N. M.; FIGUEIREDO, F. C.; SANTOS JUNIOR, J. R. dos . Cashel Nut Shell Liquid (CNSL)-based antioxidant synthesis through electrolysis of hydroquinone. Research, Society and Development, [S. l.], v. 11, n. 5, p. e49111528636, 2022. DOI: 10.33448/rsd-v11i5.28636. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28636. Acesso em: 8 jan. 2025.

Issue

Section

Exact and Earth Sciences