Physico-chemical characterization and lipid profile of a premix with buriti oil for application in meat products

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28844

Keywords:

Mauritia flexuosa L.; Fatty acid profile; Shelf life; Carotenoids; Quality índices.

Abstract

This study aimed to evaluate the physicochemical quality and fatty acid profile of a premix with partial replacement of animal fat by buriti oil (Mauritia flexuosa L.) for use in meat products. Four levels of animal fat replacement by buriti oil were formulated as 0% (P0%) 20% (P20%), 40% (P40%) and 60% (P60%) m/m. The malonic dialdehyde (MDA) content was evaluated by TBARS method, total carotenoids content (µg g-1) by ketone extraction every 30 days during 90 days of storage and fatty acids profile (g 100 g-1 of identified fatty acids) on the day of formulation. The increase in malonic dialdehyde contents (mg of MDA kg-1 of sample) was observed according to the reading times ranging from 0.28 to 0.33 at 30 days, 0.37 to 0.41 at 60 days and 0.53 to 0.75 by 90 days of storage for the formulations. There was a change in the physicochemical characteristics of the premix and improvement for the fatty acid profile in the proportion ω6 and ω3, decrease in the total saturated acids (SFA) content, increase in the oleic acid (ω9) contents according to the substitutions of animal fat for buriti oil. It is concluded that during the period of 90 days of evaluation, the premix with replacement of animal fat by buriti oil (P20%) shows itself as an alternative to be applied in the food industry in meat products such as hamburgers, sausages, meatballs, among others because it decreases the saturated fat content and improves the ω6/ω3 ratio.

References

Almeida, C. B., Corradini, E., Forato, L. A., Fujihara, R., & Lopes Filho, J. F. (2018). Microstructure and thermal and functional properties of biodegradable films produced using zein. Polímeros, 28(1), 30-37. doi:10.1590/0104-1428.11516

Amorim-Carrilho, K. T., Cepeda, A., Fente, C., & Regal, P. (2014). Review of methods for analysis of carotenoids. Trend in Analytical Chemistry, 56, 49-73. doi: 10.1016/j.trac.2013.12.011

AOCS. Official methods and reccomended practices of the American Oil Chemists’ Society. 5.ed. AOCS: Champaign, 2003.

Aquino, J. S., Pessoa, D. C. N. P., Araújo, K. L. G. V., Epaminondas, P. S., Schuler, A. R. P., Souza, A. G., & Stamford, T. L. M. (2012a). Refining of buriti oil (Mauritia flexuosa) originated from the Brazilian Cerrado: physicochemical, termal-oxidative and nutritional implications. Journal Brazilian Chemists Society, 23(2), 212-219. doi:10.1590/S0103-50532012000200004

Aquino, J. S., Pessoa, D. C. N. P., Oliveira, C. E. V., Cavalheiro, J. M. O., & Stamford, T. L. M. (2012b). Processamento de biscoitos adicionados de óleo de buriti (Mauritia flexuosa L.): Uma alternativa para o consumo de alimentos fontes de vitamina A na merenda escolar. Revista de Nutrição, 25(6), 765-774. doi:10.1590/S1415-52732012000600008

Baggio, S. R., & Bragagnolo, N. (2006). The effect of heat treatment on the cholesterol oxides, cholesterol, total lipid and fatty acid contents of processed meat products. Food Chemistry, 95, 611-619. doi: 10.1016/j.foodchem.2005.01.037

Barros, J. C., Munekata, P. E. S., Carvalho, F. A. L., Pateiro, M. Barba, F. J., Domínguez, R., Trindade, M. A., & Lorenzo, J. M. (2020). Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods, 9 (44), 2-15. doi. 10.3390/foods9010044

Blekkenhorst, L. C., Prince, R. L., Hodgson, J. M., Lim, W. H., Zhu, K., Devine, A., Thompson, P. L., & Lewis, J. R. (2015). Dietary saturated fat intake and atherosclerotic vascular disease mortality in elderly women: A prospective cohort study. The American Journal of Clinical Nutrition, 101 (6), 1263-1268. doi: 10.3945/ajcn.114.102392

Bragagnolo, N., & Rodriguez-Amaya, D. B. (1997). Fatores que influenciam o nível de colesterol, lipídios totais e composição de ácidos graxos em camarão e carne, Ciência de Alimentos. Tese Doutorado, Universidade Estadual de Campinas, Campinas, SP, Brasil. Disponível em http://repositorio.unicamp.br/jspui/handle/REPOSIP/256155 Acesso em 05 jan 2021

Carvalho, F. A. L., Lorenzo, J. M., Pateiro, M., Bermúdez, R., Purriños, L., & Trindade, M. A. (2019). Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf life storage at 2 °C. Food Research International, 125, 2-10. doi: 10.1016/j.foodres.2019.108554

Carvalho, F. A. L., Munekata, P. E. S., Pateiro, M., Campagnol, P. C. B., Domínguez, R., Trindade, M. A., & Lorenzo, J. M. (2020). Effect of replacing backfat with vegetable oils during the shelf-life of cooked lamb sausages. LWT – Food Science and Technology, 122. doi: 10.1016/j.lwt.2020.109052

Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Jeong, J. Y., Chung, H. J. & Kim, C. J. (2010). Effects of replacing pork back fat with vegetable oils and rice bran fiber on the quality of reduced-fat frankfurters. Meat Science, 84, 557-563. doi: 10.1016/j.meatsci.2009.10.012

Choi, Y. S., Park, K. S., Kim, H. W., Hwang, K. E., Song, D. H., Choi, M. S., Lee, S. Y., Paik, H. D., & Kim, C. J. (2013). Quality characteristics of reduced-fat frankfurters with pork fat replaced by sunflower seed oils and dietary fiber extracted from makgeolli lees. Meat Science, 93, 652-658. doi: 10.1016/j.meatsci.2012.11.025

Dinicolantonio, J. J., & Okeefe, J. (2019). Importance of maintaining a low ômega-6/omega-3 ratio for reducing platelet aggregation, coagulation and thrombosis. Open Herat, 6, e001011. doi: 10.1136/openhrt-2019-001011

Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497- 509. Disponível em http://www.jbc.org/content/226/1/497.short Acesso em 05 jan 2021

Freitas, M. L. F., Chisté, R. C., Polachini, T. C., Sardella, L. A. C. Z., Aranha, C. P. M., Ribeiro, A. P. B., & Nicoletti, V. R. (2017). Quality characteristics and termal behavior of buriti (Mauritia flexuosa L.) oil. Grasas y Aceites, 68 (4), 220. doi:10.3989/gya.0557171

Haila, K. M., Lievonen, S. M., & Heinonen, M. I. (1996). Effects of lutein, lycopene, annatto, and γ-tocopherol on autoxidation of triglycerides. Journal of Agricultural and Food Chemistry, 44(8), 2096-2100. doi: 10.1021/jf9504935

Hartman, L., & Lago, B. C. (1973). A rapid preparation of fatty methyl esters from lipids. Laboratory Practice, 22(6) 475-477. Disponível em https://www.researchgate.net/publication/18441624_Rapid_preparation_of_fatty_acid_methyl_esters Acesso em 05 jan 2021

Heck, R. T., Lucas, B. N., Santos, D. J. P., Pinton, M. B., Fagundes, M. B., Etchepare, M. A., Cichoski, A. J., Menezes, C. R., Wagner, J. S. B. R., & Campagnol, P. C. B. (2018). Oxidative stability of burgers containing chia oil microparticles enriched with rosemary by green-extraction techniques. Meat Science, 146, 147-153. doi: 10.1016/j.meatsci.2018.08.009

Heck, R. T., Saldaña, E., Lorenzo, J. M., Correa, L. P., Fagundes, M. B., Cichoski, A. J., Menezes, C. R., Wagner, R., & Campagnol, P. C. B. (2019). Hydrogelled emulsion from chia and linseed oils: A promising strategy to produce low-fat burgers with a healthier lipid profile. Meat Science, 156, 174-182. doi: 10.1016/j.meatsci.2019.05.034

Instituto Adolfo Lutz - IAL. Normas Analíticas do Instituto Adolf Lutz: Métodos Físico-Químicos para Análise de Alimentos (4º ed.). São Paulo: IAL, 2008. Disponível em http://www.ial.sp.gov.br/resources/editorinplace/ial/2016_3_19/analisedealimentosial_2008.pdf Acesso em 05 jan 2021

Kim, T. K., Hwang, K. E., Sung, J. M., Park, J. D., Kim, M. H., Jeon, K. H., Kim, Y. B., & Choi, Y. S. (2018). Replacement of pork back fat with pre-emulsion of wheat (Triticum aestivum L.) sprout and collagen and its optimization for reduced-fat patties. Journal of Food Processing and Preservation, 42, e13576, 1-7. doi: 10.1111/jfpp.13576

Kim, T. K., Yong, H. I., Jung, S., Kim, Y. B., & Choi, Y. S. (2020). Effects of replacing pork fat with grape seed oil and gelatine/alginate for meat emulsions, Meat Science, 163. doi: 10.1016/j.meatsci.2020.108079

Manhães, L., Menezes, E., Marques, A., & Srur, A. S. (2015). Flavored buriti oil (Mauritia flexuosa, Mart.), for culinary usage: Innovation, production and nutrition value. Journal of Culinary Science & Technology, 13(4), 362-374. doi: 10.1080/15428052.2015.1058205

Matos, A. P., Matos, A. C., & Moecke, E. H. S. (2019). Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian Journal of Food Technology, 22, e2018193, 1-11. doi. 10.1590/1981-6723.19318

Melo, D. M., Roseno, T. F., Barros, W. M., Faria, R. A. P. G., Paglarini, C. S., Faria, P. B., Mariotto, S., & Souza, X. R. (2019). Fatty acid profiles and cholesterol content of Five species of pacu-pevas from the pantanal region of Mato Grosso, Brazil. Journal of Food Composition and Analysis, 83. doi: 10.1016/j.jfca.2019.103283

Mezzomo, N., & Ferreira, S. R. S. (2016). Carotenoids functionality, sources, and processing by supercritical technology: A review. Journal of Chemistry, 1-16. doi: 10.1155/2016/3164312

Moghtadaei, M., Soltanizadeh, N., & Goli, S. A. H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108, 368-377. doi: 10.1016/j.foodres.2018.03.051

Mesquita, J. A., Oliveira, T. T. S., Santos, J. G. S., Gaspar, M. R. G. R. C., Vieira, V. A., Rodrigues, E. C., Nascimento, E., Faria, P. B., & Faria, R. A. P. G. (2020). Fatty acid profile and physicochemical characterization of buriti oil during storage. Ciencia Rural, 50, e20190997. doi.org/10.1590/0103-8478cr20190997

Monteiro, G. M., Souza, X. R., Costa, D. P. B., Faria, P. B., & Vicente, J. (2017). Partial substituition of pork fat with canola oil in Toscana sausage. Innovative Food Science & Emerging Technologies, 44, 2-8. doi: 10.1016/j.ifset.2017.07.013

Muguerza, E., Gimeno, O., Ansorena, D., Bloukas, J. G., & Astiasarán, I. (2001). Effect of replacing pork backfat with pre-emulsified olive oil on lipid fraction and sensory quality of Chorizo de Pamplona - a traditional Spanish fermented sausage. Meat Science, 59(3), 251-258. doi: 10.1016/S0309-1740(01)00075-4

Oboh, G., Falade, A. O., & Ademiluyi, A. O. (2014). Effect of thermal oxidation on the physico-chemical properties, malondialdehyde and carotenoid contents of palm oil. Rivista Italiana Delle Sostanze Grasse, XCI(1), 59-65. Disponível em https://www.researchgate.net/publication/278406066_Effect_of_thermal_oxidation_on_the_physico-chemical_properties_malondialdehyde_and_carotenoid_contents_of_palm_oil Acesso em 05 jan 2021

Oliveira, R. M. M., Pereira, F. T., Pereira, E. C., & Mendonça, C. J. S. (2020). Óleo de Buriti: Índice de qualidade nutricional e efeito antioxidante e antidiabético. Revista Virtual de Química, 12 (1), 2-12. doi:10.21577/1984-6835.20200002

Pacheco, S., Godoy, R. L. O., Nascimento, L. S. M., Cunha, C. P., Santiago, M. C. P. A., & Rosa, J. S. (2011). Adaptação do método de extração de carotenoides para escala de micro-extração. Anais da IV Reunião de Biofortificação. Teresina, PI. Disponível em https://www.embrapa.br/busca-de-publicacoes/-/publicacao/916218/adaptacao-do-metodo-de-extracao-de-carotenoides-para-escala-de-micro-extracao Acesso em 05 jan 2021

Paglarini, C. S., Furtado, G. F., Biachi, J. P., Vidal, V. A. S., Martini, S., Forte, M. B. S., Cunha, R. L., & Pollonio, M. A. R. (2018). Functional emulsion gels with potential application in meat products. Journal of Food Enginneering, 222, 29-37. doi: 10.1016/j.jfoodeng.2017.10.026

Paglarini, C. S., Furtado, G. F., Honório, A. R., Mokarzel, L., Vidal, V. A. S., Ribeiro, A. P. B., Cunha, R. L., & Pollonio, M. A. R. (2019a). Functional emulsion gels as pork back fat replacers in Bologna sausage. Food Structure, 20. doi: 10.1016/j.foostr.2019.100105

Paglarini, C. S., Martini, S., & Pollonio, M. A. R. (2019b). Using emulsion gels made with sonicated soy protein isolate dispersions to replace fat in frankfurters. LWT – Food Science and Technology, 99, 453-459. doi: 10.1016/j.lwt.2018.10.005

Poyato, C., Ansorena, D., Berasategi, I., Navarro-Blasco, I., & Astiasarán, I. (2014). Optimization of a gelled emulsion intended to supply ω-3 fatty acids into meat products by means of response surface methodology. Meat Science, 98, 615-621. doi: 10.1016/j.meatsci.2014.06.016

Queiroz, A. M. P. (2006). Efeitos do tripolifosfato de sódio sobre as características microbiológicas, físico químicas e vida de prateleira em linguiça frescal de frango, Ciência veterinária. Dissertação Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil. Disponível em https://lume.ufrgs.br/handle/10183/6758 Acesso em 05 jan 2021

Ramanathan, L. & Das, N. P. (1992). Studies on the control of lipid oxidation in ground fish by some polyphenolic natural products. Journal Agricultural of Food Chemistry, 40, 17-21. doi: 10.1021/jf00013a004

Ramos-Escudero, F., González-Miret, M. L., Viñas-Ospino, A., & Escuredo, M. R. (2019). Quality, stability, carotenoids and chromatic parameters of commercial Sacha inchi oil originating from Peruvian cultivars. Journal of Food Science and Technology, 56, 4901-4910. doi: 10.1007/s13197-019-03960-x

Reis, A. F. & Schmiele, M. (2019). Characteristics and potentialities of Savanna fruits in the food industry. Brazilian Journal of Food Technology, 22, e2017150. doi: 10.1590/1981-6723.15017

Rodriguez-Amaya, D. B. (2004). Avanços na pesquisa de carotenoides em alimentos: contribuições de um laboratório brasileiro. Revista Instituto Adolfo Lutz, 63(2), 129-138. Disponível em http://www.ial.sp.gov.br/resources/insituto-adolfo-lutz/publicacoes/rial/2000/rial63_2_completa/987.pdf Acesso em 05 jan 2021

Rodriguez-Amaya, D. B. (2016). Food Carotenoids: Chemistry, Biology, and Technology. In Nomenclature, structures, and physical and chemical properties. (Cap. 1, pp. 3-23). Oxford, UK: IFT Press series.

Sandmann, G. (2019). Antioxidant protection from uv-and light-stress related to carotenoid structures. Antioxidants, 8(7), 2-13. doi: 10.3390/antiox8070219

Santos-Silva, J., Bessa, R. J. B., & Santos-Silva, F. (2002). Effects of genotype, feeding system and slaughter weigt on the quality of light lambs. II. Fatty acid composition of meat. Livestock Production Science, 77 (2-3), 187-194. doi:10.1016/S0301-6226(02)00059-3

Santos, M., Ozaki, M. M., Ribeiro, W. O., Paglarini, C. S., Campagnol, P. C. B., & Pollonio, M. A. R. (2020). Emulsion gels based on pork skin and dietary fibers as animal fat replacers in meat emulsions: An adding value strategy to byproducts, LWT - Food Science and Technology, 120. doi:10.1016/j.lwt.2019.108895

Serra, J. L., Rodrigues, A. M. C., Freitas, R. A., Meirelles, A. J. A., Darnet, S. H., & Silva, L. H. M. (2019). Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food Research International, 116, 12-19. doi: 10.1016/j.foodres.2018.12.028

Shimokomaki, M., Olivo, R., Terra, N. N., & Franco, B. D. G. M. (2006). Atualidades em Ciência e Tecnologia de Carnes. São Paulo, SP: Varela.

Silva, S. M., Sampaio, K. A., Taham, T., Rocco, S. A., Ceriani, R., & Meirelles, A. J. A. (2009). Characterization of oil extracted from buriti fruit (Mauritia flexuosa) grown in the brazilian Amazon region. Journal American Oil Chemistry Society, 86, 611-616. doi: 10.1007/s11746-009-1400-9

Silva, S. L. S., Amaral, J. T., Ribeiro, M., Sebastião, E. E., Vargas, C., Franzen, F. L., Schneider, G., Lorenzo, J. M., Fries, L. L. M., Cichoski, A. J., & Campagnol, P. C. B. (2019). Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Science, 149, 141-148. doi.:10.1016/j.meatsci.2018.11.020

Silva e Silva, N., Hernández, E. J. G. P., Araújo, C. S., Joele, M. R. S. P., & Lourenço, L. F. H. (2018). Development and optimization of biodegradable fish gelatin composite film added with buriti oil. CyTA – Journal of Food, 16(1), 340-349. doi: 10.1080/19476337.2017.1406005

Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56, 365-379. doi: 10.1016/S0753-3322(02)00253-6

Simopoulos, A. P. (2011). Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Molecular Neurobiology, 44, 203-215. doi: 10.1007/s12035-010-8162-0

Song, X. D., Mujumdar, A. S., Law, C. L., Fang, X. M., Peng, W. J., Deng, L. Z., Wang, J., & Xiao, H. W. (2019). Effect of drying air temperature on drying kinetics, color, carotenoid content, antioxidant capacity and oxidation of fat for lotus pollen. Drying Technology. doi: 10.1080/07373937.2019.1616752

Speranza, P., Falcão, A. O., Macedo, J. A., Silva, L. H. M., Rodrigues, A. M. C., & Macedo, G. A. (2016). Amazonian buriti oil: chemical characterization and antioxidante potential. Grasas y Aceites, 67(2), e135. doi: 10.3989/gya.0622152

Speranza, P., Leão, K. M. M., Gomes, T. S. N., Reis, L. V. C., Rodrigues, A. P., Macedo, J. A., Ribeiro, A. P. B., & Macedo, G. A. (2018). Improving the chemical properties of buriti oil (Mauritia flexuosa L.) by enzymatic interesterification. Grasas y Aceites, 69(4), e282. doi:.10.3989/gya.0229181

Tang, S. Z., Kerry, J. P., Sheehan, D., & Buckley, D. J. (2002). Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chemistry, 76, 45-51. doi: 10.1016/S0308-8146(01)00248-5

Tarladgis, B. G., Watts, B. M., Younathan, M. T., & Dugan Jr, L. (1960). A distillation method for the quantitative determination of malonaldehyde in rancid foods. The Journal of the American Oil Chemists' Society, 37, 44-48. doi: 10.1007/BF02630824

Terés, S., Barceló-Coblijn, G., Benet, M., Álvarez, R., Bressani, R., Halver, J. E., & Escribá, P. V. (2008). Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proceedings of the National Academy of Sciences, 105(37), 13811-13816. doi: 10.1073/pnas.0807500105

Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: Seven dietary factors. The Lancet, 338, 985-992. doi: 10.1016/0140-6736(91)91846-m

Vásquez-Ocmín, P. G., Alvarado, L. F., Solís, V. S., Torres, R. P., & Mancini-Filho, J. (2010). Chemical characterization and oxidative stability of the oils from three morphotypes of Mauritia flexuosa L.f, from the Peruvian Amazon. Grasas y Aceites, 61(4), 390-397. doi: 10.3989/gya.010110

Vieira, R. F., Camillo, J., & Coradin, L. (2016). Espécies nativas da flora brasileira de valor econômico atual ou potencial. Plantas para o Futuro: Região Centro-Oeste. In R. C. Martins., T. S. Agostini-Costa., P. Santelli., & T. S. Filgueiras. Mauritia flexuosa - Buriti (Cap. 5, pp. 257-267). Brasília, DF: Ministério do Meio Ambiente: Série Biodiversidade. Disponível em http://agroecologia.gov.br/publicacoes/esp%C3%A9cies-nativas-da-flora-brasileira-de-valor-econ%C3%B4mico-atual-ou-potencial-%E2%80%93-plantas Acesso em 05 jan 2021

Wang, Y., Wang, W., Jia, H., Gao, G., Wang, X., Zhang, X., & Wang, Y. (2018). Using cellulose nanofibers and its palm oil pickering emulsion as fat substitutes in emulsified sausage. Journal of Food Science, 83, 1740-1747. doi: 10.1111/1750-3841.1416

Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R., & Enser, M. (2004). Effects of fatty acids on meat quality: a review. Meat Science, 66, 21-32. doi: 10.1016/S0309-1740(03)00022-6

Published

21/04/2022

How to Cite

MESQUITA, J. de A.; OLIVEIRA, T. T. da S. .; SANTOS, J. G. da S.; GASPAR, M. R. G. R. do C.; VIEIRA, V. de A. .; RODRIGUES, E. C. .; NASCIMENTO, E. .; FARIA, P. B. .; FARIA, R. A. P. G. de . Physico-chemical characterization and lipid profile of a premix with buriti oil for application in meat products . Research, Society and Development, [S. l.], v. 11, n. 6, p. e8111628844, 2022. DOI: 10.33448/rsd-v11i6.28844. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28844. Acesso em: 29 may. 2022.

Issue

Section

Agrarian and Biological Sciences