Live volume of conical stockpile reclaimed by gravity




Gravity reclaim; Bulk solids handling; Cellular automata; Analytical geometry; Modeling teaching.


Bulk solid stockpile reclaiming by gravity through bottom reclaimers at the base is a common method in the industry, as it is inexpensive, although it requires large plant floor areas. The complexity of actual particulate systems and the configuration of the recovery system often makes the quantitative prediction of dead volumes after recovery difficult, especially if historical or experimental data are not available. Incremental advances in design criteria and innovation can result in remarkable gains, due to the large amount of bulk materials currently handled. Research in this field, therefore, is still of importance. This article addresses the live volume fraction of conical stockpile recovered through underground hoppers and conveyor belt, comparing bench-scale empirical data with indirect measurements by drone-based aerial photogrammetry and mathematical modeling, via analytical geometry and computational simulation employing cellular automata. The results have shown excellent statistical adherence of the estimates both via photogrammetry and mathematical modeling.

Author Biographies

Thiago Rios Ferreira, Independent consultant

He holds a degree in Mining Engineering from the Federal University of Ouro Preto (2010) and a Master's degree in Mineral Engineering from the Federal University of Ouro Preto (2017). He has experience in the field of Mining Engineering, with an emphasis on Mining Engineering.

Matheus Henrique de Castro, Petrobras S. A.

Graduated in Mining Engineering from the Federal University of Minas Gerais (2008-2012). Resident Engineer at MFW Engenharia e Mineração Ltda (2013 - 2014) where he gained experience in the area of heavy construction in Small Hydroelectric Power Plants, working in underground tunnel excavation operations in saprolite and sound rock. He completed an academic master's degree from the Federal University of Ouro Preto (UFOP-2015-2017) creating a cellular automata model for simulating granular material flows in mining environments. Candidate for the position of Petroleum Engineering by the company Petróleo Brasileiro S.A, and works in the area of programming of critical resources in oil projects in the Pre-Salt.


Allis Mineral Systems – Fábrica De Aço Paulista (1994). Manual de britagem Faço. (5a ed.), Allis Mineral Systems.

Bandeira, D. J. A., Nascimento, J. J. da S., & Nascimento, J. W. B. do. (2020). Análise do fluxo de ração avícola em silos verticais esbeltos com insert de cone invertido. Research, Society and Development, 9(11), e63091110369.

Cândido, A. K., Paranhos Filho, A. C., Marcato Júnior, J., Silva, N. M., Haupenthal, M. R., Oliveira, J. R., Marini, L. B., & Toledo, A. M. (2018). Positional accuracy of aerophotogrammetric survey in the Pantanal derived from UAV. Geociências, 37(1), 137–146.

Carr, R. L. (1965). Evaluating flow properties of solids. Chemical Engineering; 72, 163-168.

Castro, M. H. de, Luz, J. A. da, & Milhomem, F. de O. (2022). Cellular automaton-based simulation of bulk stacking and recovery. Journal of Materials Research and Technology, 16, 263–275.

Das, B. M. & Sobhan, K. (2014) Principles of Geotechnical Engineering (8th ed.). Stamford: Cengage Learning.

Dornelas, K. C., Ayres, G. D. J.., & Nascimento, J. W. B. do. (2021). Emprego de inserts em silos metálicos: revisão sobre o padrão de fluxo dos produtos e distribuição das cargas na estrutura. Research, Society and Development, 10(4), e55710414580.

Gual-Arnau, X., & Miquel, V. L. (2006). Pappus-Guldin theorems for weighted motions. Bulletin of The Belgian Mathematical Society-Simon Stevin, 13, 123–137.

Jenike, A. W. (1961). Gravity flow of bulk solids. Bulletin of the University of Utah, Salt Lake City, 52(29).

Luz, J. A. M. da, & Peres, A. E. C. (1992, setembro). Cálculo de volume útil de pilhas de granéis pelo método de Monte Carlo simples. In V. S. T. Ciminelli & M. J. G. Salum (Eds.): Anais do III Encontro do Hemisfério Sul sobre Tecnologia Mineral — São Lourenço, MG. ABTM.

Prado, D. R., Luz, J. A. M. da, Milhomem, F. de O., & Paracampos, M. P. S. (2022). On bed porosity of multisized spheroidal particles. Brazilian Journal of Development, 8(2), 14217–14237.

Rautenberg, R. R., & Probst, R. W. (2019). Os teoremas de Pappus para os sólidos de revolução. Revista Transmutare, Curitiba, 4, e1912312, 1–59.

Roberts, A. W. (2005). Characterization for hopper and stockpile design. In D. Mcglinchey (Ed.). Characterization of Bulk Solids. Oxford: Blackwell-CRC. 2005. pp.:85 – 131.

Roberts, A. W. (2006). An Historical Overview and Current Developments; Bulk solids handling, Clausthal-Zellerfeld, 26(6), 392-419.

Schulze, D. (2008). Powder and bulk solids – Behavior, characterization, storage and flow. Berlim: Springer. 517 p.

Silva Neto, J. O., Sasaki, R. S., & Alvarenga, C. B. de. (2021). Aeronave Remotamente Pilotada (RPA) para aplicação de agrotóxico. Research, Society and Development, 10(12), e293101220573.

Soares Jr., G., Satyro, W., Bonilla, S., Contador, J., Barbosa, A., & Monken, S. et al. (2021). Construction 4.0: Industry 4.0 enabling technologies applied to improve workplace safety in construction. Research, Society and Development, 10(12), 1–18.

Suguio, K. (1973). Introdução à sedimentologia. Edgard Blücher. 317 p.

Telsmith. (2011). Mineral Processing Handbook (13th edition). Mequon: Telsmith. 220 p.

Wadell, H. (1935). Volume, shape and roundness of quartz particles; Journal of geology, Chicago, 43(3), 250-280.

Walker, Harold A. (2009). Patent US20100272543 - Bulk material storage and reclaim system. Google Books.




How to Cite

FERREIRA, T. R.; LUZ, J. A. M. da; CASTRO, M. H. de . Live volume of conical stockpile reclaimed by gravity. Research, Society and Development, [S. l.], v. 11, n. 6, p. e13511628908, 2022. DOI: 10.33448/rsd-v11i6.28908. Disponível em: Acesso em: 22 may. 2022.