Live volume of conical stockpile reclaimed by gravity
DOI:
https://doi.org/10.33448/rsd-v11i6.28908Keywords:
Gravity reclaim; Bulk solids handling; Cellular automata; Analytical geometry; Modeling teaching.Abstract
Bulk solid stockpile reclaiming by gravity through bottom reclaimers at the base is a common method in the industry, as it is inexpensive, although it requires large plant floor areas. The complexity of actual particulate systems and the configuration of the recovery system often makes the quantitative prediction of dead volumes after recovery difficult, especially if historical or experimental data are not available. Incremental advances in design criteria and innovation can result in remarkable gains, due to the large amount of bulk materials currently handled. Research in this field, therefore, is still of importance. This article addresses the live volume fraction of conical stockpile recovered through underground hoppers and conveyor belt, comparing bench-scale empirical data with indirect measurements by drone-based aerial photogrammetry and mathematical modeling, via analytical geometry and computational simulation employing cellular automata. The results have shown excellent statistical adherence of the estimates both via photogrammetry and mathematical modeling.
References
Allis Mineral Systems – Fábrica De Aço Paulista (1994). Manual de britagem Faço. (5a ed.), Allis Mineral Systems.
Bandeira, D. J. A., Nascimento, J. J. da S., & Nascimento, J. W. B. do. (2020). Análise do fluxo de ração avícola em silos verticais esbeltos com insert de cone invertido. Research, Society and Development, 9(11), e63091110369. https://doi.org/10.33448/rsd-v9i11.10369
Cândido, A. K., Paranhos Filho, A. C., Marcato Júnior, J., Silva, N. M., Haupenthal, M. R., Oliveira, J. R., Marini, L. B., & Toledo, A. M. (2018). Positional accuracy of aerophotogrammetric survey in the Pantanal derived from UAV. Geociências, 37(1), 137–146. https://doi.org/10.5016/geociencias.v37i1.11291
Carr, R. L. (1965). Evaluating flow properties of solids. Chemical Engineering; 72, 163-168.
Castro, M. H. de, Luz, J. A. da, & Milhomem, F. de O. (2022). Cellular automaton-based simulation of bulk stacking and recovery. Journal of Materials Research and Technology, 16, 263–275. https://doi.org/10.1016/j.jmrt.2021.11.127
Das, B. M. & Sobhan, K. (2014) Principles of Geotechnical Engineering (8th ed.). Stamford: Cengage Learning.
Dornelas, K. C., Ayres, G. D. J.., & Nascimento, J. W. B. do. (2021). Emprego de inserts em silos metálicos: revisão sobre o padrão de fluxo dos produtos e distribuição das cargas na estrutura. Research, Society and Development, 10(4), e55710414580. https://doi.org/10.33448/rsd-v10i4.14580
Gual-Arnau, X., & Miquel, V. L. (2006). Pappus-Guldin theorems for weighted motions. Bulletin of The Belgian Mathematical Society-Simon Stevin, 13, 123–137.
Jenike, A. W. (1961). Gravity flow of bulk solids. Bulletin of the University of Utah, Salt Lake City, 52(29).
Luz, J. A. M. da, & Peres, A. E. C. (1992, setembro). Cálculo de volume útil de pilhas de granéis pelo método de Monte Carlo simples. In V. S. T. Ciminelli & M. J. G. Salum (Eds.): Anais do III Encontro do Hemisfério Sul sobre Tecnologia Mineral — São Lourenço, MG. ABTM.
Prado, D. R., Luz, J. A. M. da, Milhomem, F. de O., & Paracampos, M. P. S. (2022). On bed porosity of multisized spheroidal particles. Brazilian Journal of Development, 8(2), 14217–14237. https://doi.org/10.34117/bjdv8n2-378
Rautenberg, R. R., & Probst, R. W. (2019). Os teoremas de Pappus para os sólidos de revolução. Revista Transmutare, Curitiba, 4, e1912312, 1–59.
Roberts, A. W. (2005). Characterization for hopper and stockpile design. In D. Mcglinchey (Ed.). Characterization of Bulk Solids. Oxford: Blackwell-CRC. 2005. pp.:85 – 131.
Roberts, A. W. (2006). An Historical Overview and Current Developments; Bulk solids handling, Clausthal-Zellerfeld, 26(6), 392-419.
Schulze, D. (2008). Powder and bulk solids – Behavior, characterization, storage and flow. Berlim: Springer. 517 p.
Silva Neto, J. O., Sasaki, R. S., & Alvarenga, C. B. de. (2021). Aeronave Remotamente Pilotada (RPA) para aplicação de agrotóxico. Research, Society and Development, 10(12), e293101220573. https://doi.org/10.33448/rsd-v10i12.20573
Soares Jr., G., Satyro, W., Bonilla, S., Contador, J., Barbosa, A., & Monken, S. et al. (2021). Construction 4.0: Industry 4.0 enabling technologies applied to improve workplace safety in construction. Research, Society and Development, 10(12), 1–18.
Suguio, K. (1973). Introdução à sedimentologia. Edgard Blücher. 317 p.
Telsmith. (2011). Mineral Processing Handbook (13th edition). Mequon: Telsmith. 220 p.
Wadell, H. (1935). Volume, shape and roundness of quartz particles; Journal of geology, Chicago, 43(3), 250-280.
Walker, Harold A. (2009). Patent US20100272543 - Bulk material storage and reclaim system. Google Books. https://www.google.com/patents/US20100272543.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Thiago Rios Ferreira; José Aurélio Medeiros da Luz; Matheus Henrique de Castro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.