Evaluation of the influence of starch addition on polyurethane properties

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.29128

Keywords:

Starch; Thermoplastic polyurethane; Composite; Polymerization.

Abstract

Polyurethanes are among the most versatile polymers in the world with great demand in today's market. The development of new compositions is necessary, due to the search for high performance materials and with properties different from the existing ones. Incorporating fillers into the polymer is a means of improving the performance of polyurethane. Thus, the present work aimed to incorporate starch into thermoplastic polyurethane via in situ polymerization, in proportions of 1.0%, 2.0%, 3.0% and 5.0% by mass in relation to the mass of pure polymer, and evaluate the thermal and morphological properties of the composites obtained. Polyurethane was obtained through the reaction of polycaprolactonediol (PCL) and hexamethylene 1,6-diisocyanate (HDI). The morphology of the composites obtained was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, the surface of the polymers was evaluated using the wettability technique. Based on the results obtained, the composite that presented the best performance was polyurethane with 5% starch, as it showed an increase in crystallinity and, therefore, an increase in thermal resistance. In addition, the best dispersion of the filler in the polymer matrix was verified for the microcomposite with 5% starch, indicating that the starch added distinct properties to the composite.

References

Alghamdi M. N. (2020). Thermoplastic composite system using polymer blend and fillers. Journal of King Saud University - Engineering Sciences, In Press, Corrected Proof.

Artiaga, K. C. M. (2014). Desenvolvimento e aplicação do compósito plásticomadeira (Poliuretano/resíduo de MDF) na indústria de base de calçados. Dissertação (Mestrado em Engenharia de Materiais) – Programa de Pós-Graduação em Engenharia de Materiais da REDEMAT, Universidade Federal de Ouro Preto, Ouro Preto, MG, 79 p.

Balmayor, E. R., Tuzlakoglu, K., Azevedo, H. S., Reis, R. L. (2009). Preparation and characterization of starch-poly-ε-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomaterialia, 5(4), 1035-1045.

Batista, N. L. (2015). Estudo do efeito da cristalinidade nas propriedades mecânicas de compósitos termoplásticos com aplicações aeronáuticas. Tese (Doutorado em Engenharia de Materiais), Universidade Estadual Paulista, Guaratinguetá, SP, 180 p.

Chen, M., Parsons, A. J., Felfel, R. M., Rudd, C. D., Irvine, D. J., Ahmed, I. (2016). In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 59, 78-89.

Dessimon, D. L. (2016). Microcompósitos de poliuretanos, por polimerização in situ, com resíduo wet blue da indústria coureira. Trabalho de Conclusão de Curso (Monografia) – Curso de Engenharia Química, Universidade Feevale, Novo Hamburgo, RS, 75 p.

Du, M., Guo, B., Demin, J. I. A. (2006). Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal, 42(6), 1362-1369.

EMBRAPA. (2012). Compósito de amido termoplástico e policaprolactona reforçado com fibras de sisal pré-tratadas com peróxido alcalino. VI Workshop da rede de nanotecnologia aplicada ao agronegócio, Fortaleza. São Carlos: LNNA, p.258-260.

Estrela, C. (2018). Metodologia científica: Ciência, Ensino e Pesquisa. 3ª Edição, Editora: Artes Médicas, Universidade Federal de Goiás (FO/UFG) – Goiás, 738p.

Freitas, M. C. J, Tavares, D. Q. (2005). Caracterização do grânulo de amido de bananas. Ciência e Tecnologia de Alimentos, 25(2), 217-222.

Gurgel, D., Bresolin, D., Sayer, C., Filho, L. C., Araújo, P. H. H. (2021). Flexible polyurethane foams produced from industrial residues and castor oil. Industrial Crops and Products, 164, 113377.

Isotton, F. S. (2013). Desenvolvimento e caracterização de filmes de amido de milho eterificado com plastificante glicerol, sorbitol e poli (álcool vinílico). Dissertação (Mestrado em Engenharia de Processos e Tecnologias) – Programa de Mestrado em Engenharia de Processos e Tecnologias, Universidade de Caxias do Sul, Caxias do Sul, RS, 100 p.

Kurdziel, M., Łabanowska, M., Pietrzyk, S., Pająk, P., Królikowska, K., Szwengiel, A. (2022). The effect of UV-B irradiation on structural and functional properties of corn and potato starches and their components. Carbohydrate Polymers, 289(1), 119439.

Machado, M. L. C., Pereira, N. C., Miranda, L. F., Terence, M. C., Pradella, J. G. C. (2010). Estudo das propriedades mecânicas e térmicas do polímero Poli-3-hidroxibutirato (PHB) e de compósitos PHB/pó de madeira. Materials Research, 20(1), 65-71.

Munoz, P. A. R., Oliveira, C. F. P., Amurin, L. G., Rodriguez, C. L. C., Nagaoka, D. A., TAvares, M. I. B., Domingues, S. H., Andrade, R. J. E., Fechine, G. J. M. (2018). Novel improvement in processing of polymer nanocomposite based on 2D materials as fillers. Express Polymer Letters, 12, 930-945.

Ojogbo, E., Ogunsona, E. O., Mekonnen, T. H. (2020). Chemical and physical modifications of starch for renewable polymeric materials. Materials Today Sustainability, 7–8, p.100028.

Ono, R. (2019). Obtenção e caracterização de compósitos de copolímero aleatório de polipropileno e carga de amido de mandioca. Trabalho de Conclusão de Curso (Monografia) – Curso de Engenharia de Materiais, Universidade Tecnológica Federal do Paraná, Londrina, PR, 39 p.

Prado, M. A., Dias, G., Carone, C. L., Ligabue, R., Dumas, A., Martin, F., Roux, C. L., Micoude, P., Einloft, S. (2015). Synthetic silico-metallic mineral particles (SSMMP) as nanofillers: comparing the effect of different hydrothermal treatments on the PU/SSMMP nanocomposites properties. Polymer Bulletin, 72, p.2991–3006.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM, 119p.

Ravindren, R., Mondal, S., Nath, K., Narayan C. (2019). Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Composites Part A: Applied Science and Manufacturing, 118, p.75-89.

Reis, M. M., Brito, G. F., Santos, Z. I. G., Ueki, M. M., Santos, R. F. A. (2016). Avaliação do tipo de compatibilizante nas propriedades de blendas de polietileno/amido. Congresso Brasileiro de Engenharia e Ciência dos Materiais, 22, p.9623-9633.

Severino, A. J. (2013). Metodologia do trabalho científico. 3ª Edição, Cortez Editora, São Paulo – SP, 274p.

Silva, V. D., Santos, L., Subda, S. M., Ligabue, R. (2013). Synthesis and characterization of polyurethane/ titanium dioxide nanocomposites obtained by in situ polymerization. Polymer Bulletin, 70(6), 1819–1833.

Soni, S. S., Rodell, C. B. (2021). Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomaterialia, 133(1), p.139-152.

Souza, D. R. S., Mesquita, J. P., Lago, R. M., Caminhas, L. D., Pereira, F. V. (2016). Cellulose nanocrystals: A versatile precursor for the preparation of different carbon structures and luminescent carbon dots. Industrial Crops and Products, 93, 121-128.

Szycher, M. (2013). Handbook of polyurethanes. 2º ed. New York: Taylor & Francis group.

Travinskaya, Т. V., Brykova, A. N., Babkina, N. V., Mamunya, Y. P., Shtompel, V. I., Robota, L. P., Savelyev, Y. V. (2021). Structural peculiarities, thermal and viscoelastic properties of ionomeric polyurethanes based on renewable raw materials. International Journal of Polymer Analysis and Characterization, 26(5), 458-469.

Wang, T., Yu, C., Yang, C., Shieh, Y., Tsai, Y., Wang, N. (2011). Preparation, Characterization, and Properties of Polyurethane-Grafted Multiwalled Carbon Nanotubes and Derived Polyurethane Nanocomposites. Journal of Nanomaterials, 2011, 1-9.

Published

27/04/2022

How to Cite

CRUZ, C. K. .; KUNST, S. R.; MORISSO, F. D. P. .; OLIVEIRA, C. T. .; CARONE, C. L. P. . Evaluation of the influence of starch addition on polyurethane properties . Research, Society and Development, [S. l.], v. 11, n. 6, p. e26211629128, 2022. DOI: 10.33448/rsd-v11i6.29128. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29128. Acesso em: 29 may. 2022.

Issue

Section

Engineerings