Efficiency of Trichoderma asperellum as a promoter of vegetable growth and soybean productivity
DOI:
https://doi.org/10.33448/rsd-v11i6.29200Keywords:
Glycine max (L.) Merrill; Fungus; Inoculation.Abstract
Aiming to achieve greater economic returns by increasing the biomass and productivity of strategic crops, such as soybeans, this article aimed to evaluate the efficiency of TrichoPlus (Trichoderma asperellum), as a promoter of plant growth in soybeans. Four independent experiments were carried out in the municipalities of Porto Nacional and Gurupi, Tocantins, Brazil, in the 2017/2018 and 2018/2019 harvests. Four experiments were conducted, each with four treatments with different doses of TrichoPlus (2, 3, 4 and 5 g kg-1 per seeds), plus two control treatments, one positive control with commercial product based on Trichoderma asperellum and one absolute control (without inoculation). For the treatment with the TrichoPlus product, the powder formulation was used, with active ingredient based on Trichoderma asperellum 201, formulated with a minimum concentration of 2 x 108 CFU g-1. The positive results for the biomass characteristics, stand maintenance and productivity were evidenced in the different doses of TrichoPlus, with emphasis on doses close to 5 g kg-1 of seeds, with gains in productivity above 23% for the 2017/2018 harvest and above 9% for the 2018/2019 harvest in Gurupi. In Porto Nacional the productivity gain for the 2017/2018 harvest was over 21% and for the 2018/2019 harvest it was over 27% in relation to the absolute control. Considering the different doses of TrichoPlus used in the experiments, there were differences between the doses with the best results for treatments with doses of 4 and 5 g kg-1 of seeds.
References
Bettiol, W., Silva, J. C., Castro, & M. L. M. P. (2019). Uso atual e perspectivas do Trichoderma no Brasil. In: Meyer, M. C., Mazaro, S. M., & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa, cap. 1.
Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A. & Melo, I. S. (2020). Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10(2858), 1-13.
Chagas, L. F. B., Castro, H. G., Colonia, B. S. O., Carvalho Filho, M. R., Miller, L. O. & Chagas Junior, A. F. (2015). Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany, 38(4), 1-11.
Chagas, L. F. B., Castro, H. G., Colonia, B. S. O., Filho, M. R. C., Miller, L. O., & Chagas Junior, A. F. (2016). Efficiency of the inoculation of Trichoderma asperellum UFT-201 in cowpea production components under growth conditions in field. Revista de Ciências Agrárias, 39(3), 413-421.
CHAGAS, L. F. B., Colonia, B. S. O., Santos, G. R., Scheidt, G. N., Portella, A. C. F., Soares, L. P., & Chagas Junior, A. F. (2017). Rice growth influence by Trichoderma spp. with natural phosphate fertilization under greenhouse conditions. International Journal of Development Research, 7(6): 13147-13152.
Chagas junior, A. F., Oliveira, A. G., Santos, G. R., Reis, H. B., Chagas, L. F. B. & Miller, L. O. (2015). Combined inoculation of rhizobia and Trichoderma spp. on cowpea in the savanna, Gurupi-TO, Brazil. Revista Brasileira de Ciências Agrárias, 10(1), 27-33.
Chagas Junior, A. F., Chagas, L. F. B., Miller, L. O. & Oliveira, J. C. (2019a). Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research, 14(5), 263-271.
Chagas Junior, A. F., Chagas, L. F. B., Colonia, B. S. O., Miller, L. O. & Oliveira, J. C. (2019b). Trichoderma asperellum (UFT201) functions as a growth promoter for soybean plant. African Journal of Agricultural Research, 14(33), 1772-1777.
Contreras-Cornejo, H. A., López-Bucio, J. S., Méndez-Bravo, A., Macías-Rodríguez, L., Ramos-Vega, M., Guevara-García, A. A., & López-Bucio, J. (2015). Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant Microbe Interact, 28(6), 701-10.
Contreras-Cornejo, H. A., Macías-Rodríquez, L., Del-Val, E. & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92, 1-17.
Domínguez, S., Rubio, M. B., Cardoza, R. E., Gutiérrez, S., Nicolás, C., Bettiol, W., Hermosa, R. & Monte, E. (2016). Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans acetamidase amdS gene. Frontiers in Microbiology, 7, 1182.
Embrapa. (2011). Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: EMBRAPA - CNPS.
Fiorentino, N., Ventorino, V., Woo, S. L., Pepe, O., Rosa, A., Gioia, L., Romano, I., Lombardi, N., Napolitano, M., Colla, G., & Rouphael, Y. (2018). Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Frontiers in Plant Science, 9, 743.
González-Marquetti, I., Infante-Martínez, D., Arias-Vargas, Y., Gorrita-Ramírez, S., Hernández-García, T., Pons, B. M. N., Martínez, B., & Peteira, B. (2019). Efecto de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg sobre indicadores de crecimiento y desarrollo de Phaseolus vulgaris L. cultivar BAT-304. Revista de Protección Vegetal, 34(2), 1-10.
Harman, G. E., Doni, F., Khadka, R. B. & Uphoff, N. (2019). Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology, 130(2), 529-546.
Henning, A. A. (2009). Manejo de doenças da soja (Glycine max L. Merrill). Informativo ABRATES, 19, 9-12.
Mapa. (2020). Ministério da Agricultura, Pecuária de Abastecimento. Instrução Normativa no. 1 de 02 de fevereiro de 2012. Definições das macrorregiões e regiões edafoclimáticas para a soja no Zoneamento Agrícola. Instrução-Normativa-nº-1-de-2-de-fevereiro-de-2012-Definição-das-macroregiões-e-regiões-edafoclimáticas-para-soja-no-Zoneamento-Agrícola.pdf (abrasem.com.br).
Martínez, B., Infante, D., & Reyes, Y. (2013). Trichoderma spp. y su función em el control de plagas em los cultivos. Revista de Protección Vegetal, 28, 1-11.
Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B. A. & Mukherjee, P. K. (2018). Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biology Reviews, 32(2), 62-85.
Monte, B. H., Bettiol, E., & Hermosa, R. (2019). Trichoderma e seus mecanismos de ação para o controle de doenças de plantas. In: Meyer, M. C., Mazaro, S. M., & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa, cap. 4.
Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma - a genomic perspective. Microbiology, 158, 35-45.
Patil, A. S., Patil, S. R., & Paikrao, H. M. (2016). Trichoderma secondary metabolites: their biochemistry and possible role in disease management. In: Choudhary, D. K. & Varma, A. (Eds.). Microbial-mediated induced systemic resistance in plants. Singapore: Springer.
Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Update world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science, 11, 1633-1644.
Ramada, M. H. S., Lopes, F. A. C., & Ulhoa, C. J. (2019). Trichoderma: metabólitos secundários. In: Meyer, M. C., Mazaro, S. M., & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa.
Samuels, G. J., Ismaiel, A., Bon, N., Respinis, S. D., & Petrine, O. (2010). Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia, 102(4), 944-966.
Silva, G. B., Rêgo, M. C. F., França, S. K. S., Sousa, T. P., Nascente, A. S., Lanna, A. C., Filippi, M. C. C., Souza, A. C. A., & Andrade, G. B. (2019). Uso do Trichoderma na cultura do arroz. In: Meyer, M. C., Mazaro, S. M., & Silva, J. C. (Eds.). Trichoderma: Uso na Agricultura. Brasília, DF: Embrapa.
SOFO, A., Nuzzaci, M., Vitti, A., Tataranni, G., & Scopa, A. (2014). Control of biotic and abiotic stresses in cultivated plants by the use of biostimulant microorganisms. In: Ahmad, P., Wani, M., Azooz, M., & Tran, L. S. (Eds.). Improvement of crops in the era of climatic changes. New York: Springer.
Vargas, W. A., Mandawe, J. C., & Kenerley, C. M. (2009). Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology, 151, 792-808.
Woo, S. L. & Pepe, O. (2018). Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1801.
ZHANG, F., Yuan, J., Yang, X., Cui, Y., Chen, L., Ran, W., & Shen, Q. (2013). Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant and Soil, 368, 433-44.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Aloisio Freitas Chagas Junior; Manuella Costa Souza; Albert Lennon Lima Martins; Celso Afonso Lima; Dalilla Moreira de Oliveira Moura; Ana Lícia Leão Ferreira; Millena Barreira Lopes; Lillian França Borges Chagas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.