Integrating the use of computational analysis techniques into modern pharmaceutical R&D
DOI:
https://doi.org/10.33448/rsd-v11i7.29672Keywords:
Molecular docking simulation; Molecular dynamics simulation; Biological products; Drug discovery; Teaching.Abstract
The path of the development process of new molecules for drugs is long and complex. Thus, in silico techniques are widely used for drug discovery. This paper aimed to analyze the importance of computational techniques in the current pharmaceutical research and development (R&D) scenario. This is an integrative literature review, which after the analysis of 202 articles found in scientific databases 11 were selected based on the inclusion criteria: research articles published in the last ten years, and exclusion criteria: theses, monographs, and review articles. The work shown here applied computational methods of drug development such as molecular docking, molecular dynamics and analyses of administration, distribution, metabolism, excretion and toxicity (ADMET). The phytoconstituents of the studies under analysis were isolated from the following plants Rhoeo spathacea, Pluchea indica, Piper Longum, Piper Nigrum, A. paniculata, E. harmandiana, S. flavescens, Justicia gendarussa, Burm f. and Punica granatum, besides the secondary metabolites such as flavonoids, flavones and polyphenols, which have been confirmed in these studies as drug candidates, by possessing potent inhibitory action against the proposed molecular targets. It was observed in these studies that computational drug development techniques, using the strategies of molecular docking and molecular dynamics, have been successful in discovering new chemical entities with potent biological activity from natural products. It denotes as prospects that R&D will increasingly play a leading role in simulation techniques, as these promote cost savings, reduced time, and medication innovation.
References
Almeida, V. L., Lopes, J. C. D., Oliveira, S. R., Donnici, & Montanari, C. A. (2010). Estudos de relações estrutura-atividade quantitativas (QSAR) de bis-benzamidinas com atividade antifúngica. Química Nova, 33(7), 1482-1489. https://doi.org/10.1590/S0100-40422010000700011.
Amaral, A. T., Andrade, C. H., Kümmerle, A. E., & Guido, R. V. C. (2017). A evolução da química medicinal no Brasil: avanços nos 40 anos da sociedade brasileira de química. Química Nova, 40(6), 694-700. https://doi.org/10.21577/0100-4042.20170075.
Andricopulo, A. D., Guido, R. V. C. & Oliva, G. (2010). Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas. Estudos Avançados, 24(70) 81-98. https://doi.org/10.1590/S0103-40142010000300006.
Asai, A., Koseki, J., Konno, M., Nishimura, T., Gotoh, N., Sato, T., Doki, Y., Mori, M., & Ishii, H. (2018). Drug discovery of anticancer drugs targeting methylenetetrahydrofolate dehydrogenase. Heliyon, 4(12). https://doi.org/10.1016/j.heliyon.2018.e01021.
Barreiro, E. J. (2002). Estratégia de simplificação molecular no planejamento racional de fármacos: a descoberta de novo agente cardioativo. Química Nova, 25(6), 1172-1180. https://doi.org/10.1590/S0100-40422002000700018.
Barreiro, E. J. & Fraga, C. A. M. (2005). A questão da inovação em fármacos no Brasil: proposta de criação do programa nacional de fármacos (Pronfar). Química Nova, 28(15), 56-63. https://doi.org/10.1590/S0100-40422005000700012.
Bhowmik, D., Nandi, R., Prakash, A., & Kumar, D. (2021). Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon, 7(4). https://dx.doi.org/10.1016%2Fj.heliyon.2021.e06515.
Davella, R., Gurrapu, S., & Mamidala, E. (2021). Phenolic compounds as promising drug candidates against COVID-19 - an integrated molecular docking and dynamics simulation study. Materials Today: Proceedings,50(32). https://doi.org/10.1016/j.matpr.2021.05.595.
Gupta, P., Mohammad, T., Khan, P., Alajmi, M. F., Hussain, A., Rehman, M., T., & Hassan, M. I. (2019). Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: A targeted approach towards anticancer therapy. Biomedicine & Pharmacotherapy, 118(81). https://doi.org/10.1016/j.biopha.2019.109245.
Jónsdóttir, S. Ó., Jorgensen, F. S., & Brunak, S. (2005). Métodos de previsão e bancos de dados dentro de quimioinformática: ênfase em drogas e candidatos a drogas. Bioinformática, 21(10), 2145-2160. https://doi.org/10.1093/bioinformatics/bti314.
Lakheira, S., Devlal, K., Ghosh, A., & Rana, M. (2021). In silico investigation of phytoconstituents of medicinal herb ‘Piper Longum’ against SARS-CoV-2 by molecular docking and molecular dynamics analysis. Results in Chemistry, 3(1). https://doi.org/10.1016/j.rechem.2021.100199.
Lin, X., Li, X., & Lin, X. (2020). A Review on Applications of Computational Methods in Drug Screening and Design. Molecules, 25(6). https://doi.org/10.3390/molecules25061375.
Lombardino, J., & Lowe, J. (2004). The role of the medicinal chemist in drug Discovery: then and now. Nat Rev Drug Discov, 3(1), p. 853-862. https://www.nature.com/articles/nrd1523.
Mendes, K. D. S., Silveira, R. C. C. P. & Galvão, C. M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidência na saúde e na enfermagem. Texto & Contexto Enfermagem, 17(4), 758-764. https://doi.org/10.1590/S0104-07072008000400018.
Nirmalraj, S., Gaythiri, E. Sivamurugan, M., Manivasagaperumal, R., Jayanthi, J., Prakash, P., & Selvam, K. (2021). Molecular docking based screening dynamics for plant based identified potential compounds of PDE12 inhibitors. Current Research in Green and Sustainable Chemistry, 7(3). https://doi.org/10.1016/j.crgsc.2021.100122.
Parasasty, V. D., Cindana, S., Ivan, F. X., Zahroh, H., & Sinaga, E. (2020). Structure-based discovery of novel inhibitors of Mycobacterium tuberculosis CYP121 from Indonesian natural products. Computational Biology and Chemistry, 85(32). https://doi.org/10.1016/j.compbiolchem.2020.107205.
Prieto-Martinez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Molecular docking: current advances and challenges. TIP, 21(20). https://doi.org/10.22201/fesz.23958723e.2018.0.143.
Santi, M. D., Bouzidi, C., Gorod, N. S., Puiatti, M., Michel, S., Grougnet, R., & Ortega, M. G. (2019). In vitro biological evaluation and molecular docking studies of natural and semisynthetic flavones from Gardenia oudiepe (Rubiaceae) as tyrosinase inhibitors. Bioorganic Chemitry, 82, 241-245. https://doi.org/10.1016/j.bioorg.2018.10.034.
Sasidharan, S., & Saudagar, P. (2020). Flavones reversibly inhibit Leishmania donovani tyrosine aminotransferase by binding to the catalytic pocket: An integrated in silico-in vitro approach. International Journal of Biological Macromolecules, 164(77), 2987-3004. https://doi.org/10.1016/j.ijbiomac.2020.08.107.
Surucic, R., Travar, M., Petkovic, M. Tubic, B., Stojiljkovic, M., P., Grabez, M., Savikin, K., Zdunic, G., & Skrbic, R. (2021). Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: In silico and in vitro studies. Bioorganic Chemistry, 114(76). https://doi.org/10.1016/j.bioorg.2021.105145.
VERMA, D., Mitra, D., Paul, M., Chaudhary, P., Kamboj, A., Thatoi, H., Janmeda, P., Jain, D., Panneerselvam, P., Shrivastav, R., Pant, K., & Mohapatra, P. K. D. (2021). Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/ 3CLpro: molecular docking and simulation studies of three pertinent medicinal plant natural componentes. Current Research in Pharmacology and Drug Discovery, 2(1). https://doi.org/10.1016/j.crphar.2021.100038.
Wei, B., Yang, W., Yan, Z. X., Zhang, Q., W., & Yan, R. (2018). Prenylflavonoids sanggenon C and kuwanon G from mulberry (Morus alba L.) as potent broad-spectrum bacterial β-glucuronidase inhibitors: Biological evaluation and molecular docking studies. Journal of Functional Foods, 65(48), 210-219. https://doi.org/10.1016/j.jff.2018.07.013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Maria Rosana Marques da Silva; Polyanna dos Santos Negreiros; Pauline Sousa dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.