Influence of basic wood density on the specific cutting energy




Energy analyzer; Optimization of mechanical processing; Peripheral milling.


The density of the wood influences directly on the quality of the surface, on the resistance to cutting as well as on the energy required for processing. The aim of this study was to obtain the association between specific cutting energies and basic wood densities in peripheral milling with the use of a computer numerical control. For this purpose, wood from nine species with a wide range of basic densities were used. The specimens were milled in a router with a CNC. Both the feeding and routing speeds were constant, and there was no source of variation among treatments. The values of specific energy were calculated taking into account the active power, the cutting time and the volume of wood removed. Results showed that there was a moderate correlation (r=0.61) between specific cutting energy and basic wood density data. However, by observing the particularities of each species, it was noticeable that the specific cutting energy varied as a result of factors such as the anatomical structure and the type of wood grain. It was concluded that the basic wood density has a positive correlation on the specific cutting energy required, yet it does not explain this relationship alone.


Axelsson, B., Lundberg, S. & Grönlund, A. (1993). Studies of the main cutting force at and near a cutting edge. Holz als Roh- und Werkstoff ,51(1), 43-48.

Andrade, A. C. A., Guedes, T. O., Oliveira, M. B. & Silva, J. R. M. (2018). Analysis of specific cutting energy in planing of native species of Brazil for solid product purpose. Australian Journal of Basic and Applied Sciences, 12 (3), 27-30.

Andrade, A. C. A., Santos, R. L., Santos, C., Fonseca, A. D., Santana Neto, A. M. & Cardoso Júnior, A. A. (2019). Umidade da madeira como fator de influência no processamento. Agropecuária Científica e no Semiárido, 15(3), 243-247.

Associação Brasileira de Normas Técnicas, ABNT. (2010). NBR 7190: Projeto de Estruturas de Madeira.

Associação Brasileira de Normas Técnicas, ABNT. (2003). NBR 11941: Madeira – Determinação da densidade básica.

Brown, H. P., Panshin, A. J. & Forsaith, C. C. (1949). Textbook of wood technology. Londres: McGraw-Hill.

Carvalho, A. M., Silva, B. T. B. & Latorraca, J. V. F. (2010). Avaliação da usinagem e caracterização das propriedades físicas da madeira de mogno africano (Khaya ivorensis A. Chev.). Cerne, 16, 106-114.

Csanády, E., Kovács, Z., Magoss, E., & Ratnasingam, J. (2019). Furniture Production Processes: theory to practice. In: Csanády, E., Kovács, Z., Magoss, E. & Ratnasingam, J. (Eds.), Optimum Design and Manufacture Of Wood Products (pp. 367-421), Springer International Publishing.

Chuchala, D., Orlowski, K., Pauliny, D., Sandak, A. & Sandak, J. (2013). Is it right to predict cutting forces on the basis of wood density? In: Proceedings of the 21st International Wood Machining Seminar. 4–7 August 2013, Tsukuba, Japan. pp. 37- 45.

Cristóvão, L., Broman, O., Gronlund, A., Ekevad, M., & Sitoe, R. (2012). Main cutting force models for two species of tropical wood. Wood Material Science & Engineering, 7(3), 143-149.

Delatorre, F. M., Cupertino, G. F. M., Santos Júnior, A. J., Silva, A. M., Dias Júnior, A. F. & Carvalho, A. M. (2020). Comportamento da madeira de Ingá (Inga edulis Mart) frente a ensaios de usinagem. Research, Society and Development, 9 (8), e352985119.

Eyma, F., Meausoone, P.J. & Martin, P. (2004). Strains and cutting forces involved in the solid wood rotating cutting process. Journal of Materials Processing Technology, 148, 220-225.

Goli, G., Fioravanti, M., Marchal, R. & Uzielli, L. (2009). Up-milling and down-milling wood with different grain orientations – theoretical background and general appearance of the chips. Eur J Wood Prod 67(3), 257–263.

Guedes, T.O. (2016). Consumo de energia específica de corte em madeiras de diferentes densidades em distintas umidades. Dissertação de mestrado, Universidade Federal de Lavras, Lavras, MG, Brasil. Acesso em 20 de Abril de 2022,

Guedes, T. O., Silva, J. R. M., Hein, P. R. G. & Ferreira, S. C. (2020). Cutting energy required during the mechanical processing of wood species at diferente drying stages. Maderas. Ciencia y Tecnología, 22 (4), 477-482.

Koch, P. (1964). Wood Machining Processes. Finland Institute for Technical Research. Ronald Press, New York.

Melo, L. E. L., Silva, J. R. M., Napoli, A., Lima, J. T., Trugilho, P. F. & Nascimento, D. F. R. (2016). Study of the physical properties of Corymbia citriodora wood for the prediction of specific cutting force. Scientia Forestalis 44 (111), 701-708.

Paul, L., Babu, J., & Davim, J. P. (2019). Non-conventional Micro-machining Processes. Materials Forming, Machining And Tribology, 109-139.

Porankiewicz, B., Iskra, P., Jóźwiak, K., Tanaka, C. & Zborowski,W. (2008). High speed steel tool wear after wood milling in the presence of high temperature tribochemical reactions. BioResources, 3 (3), 838-858.

Souza, E. M., Silva, J. R. M., Lima, J. T., Napoli, A., Raad, T., J. & Gontijo, T. G. (2011). Energia específica de corte em serra circular para os clones de Eucalyptus VM01 e MN463. Cerne, 17(1), 109-115.

Taques, A. C., & Arruda, T. P. M. (2016). Usinagem da madeira de angelim pedra (Hymenolobium petraeum). Revista de Ciências Agroambientais, 14 (1), 97-103.




How to Cite

ANDRADE, A. C. de A.; BRITO, T. R.; SILVA , J. R. M. da; FERREIRA, S. C.; CARDOSO JUNIOR, A. A. .; LIMA, J. T. . Influence of basic wood density on the specific cutting energy . Research, Society and Development, [S. l.], v. 11, n. 7, p. e13511729674, 2022. DOI: 10.33448/rsd-v11i7.29674. Disponível em: Acesso em: 6 jul. 2022.



Agrarian and Biological Sciences