Biopolymers in the preservation of rhizobacteria cells and efficiency in soybean inoculation

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.29688

Keywords:

Inoculant; Preservative; Glycine max (L.) Merr.

Abstract

Soybean (Glycine max (L). Merr.) is among the most important legumes worldwide performing a significant role in biological fixation of nitrogen through rhizobacteria. These microorganisms that act in the plant root system are inoculated by biological products, which must contain viable cells. The viability of inoculants is a market challenge, and biopolymers have been studied for the preservation of microorganisms. Thus, this study aimed to assess the influence of adding xanthan gum and carboxymethylcellulose biopolymers on the preservation of cells of Bradyrhizobium elkanii, Bradyrhizobium diazoefficiens, Azospirillum sp., and Pseudomonas fluorescens, and inoculation of soybean seeds. The inoculants were produced and stored added with biopolymers. Soybean seeds were inoculated at 0, 90 and 210 inoculant storage days and sown in pots of 1 L. 50 days after emergence for assessing physiological parameters of stomatal conductance (gs - mol H20 m-2 s-1), CO2 assimilation rate (A - µmol CO2 m-2 s-1), transpiration rate (E - mmol H2O m-2 s-1), in addition to morphological parameters of plant height (H), fresh mass of aerial part (FMAP), root fresh mass (RFM), number of nodules (NNo), fresh mass of nodules (FMNo), dry mass of aerial part (DMAP), root dry mass (RDM), and dry mass of nodules (DMNo). The use of biopolymers proved efficient at preserving the cells of the microorganisms tested at 210 storage days through the responses obtained from an increase in aerial and root plant biomass resulting from a more efficient nodulation in the inoculant with biopolymer.

Author Biographies

Manuella Costa Souza, Universidade Federal do Tocantins

Biotecnologia; Microbiologia

Lillian França Borges Chagas, Universidade Federal do Tocantins

Agronomia; Produção Vegetal; Microbiologia

Albert Lennon Lima Martins, Universidade Federal do Tocantins

Agronomia; Produção Vegetal; Microbiologia

Celso Afonso Lima, Universidade Federal do Tocantins

Agronomia; Microbiologia

Dalilla Moreira de Oliveira Moura, Universidade Federal do Tocantins

Agronomia; Microbiologia

Millena Barreira Lopes, Universidade Federal do Tocantins

Agronomia; Microbiologia

Ana Licia Leão Ferreira, Universidade Federal do Tocantins

Agronomia; Microbiologia

Kellem Ângela Oliveira de Sousa, Universidade Federal do Tocantins

Agronomia; Produção Vegetal; Microbiologia

Aloisio Freitas Chagas Junior, Universidade Federal do Tocantins

Agronomia; Biotecnologia; Microbiologia

References

Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486. https://doi.org/10.1016/j.tplants.2012.04.001.

Berninger, T., López, O. G., Bejarano, A., Preininger, C., & Sessitsch, A. (2017). Manutenção e avaliação da viabilidade celular na formulação de inoculantes bacterianos não esporulantes. Microbial biotechnology, 11, 277-301. https://doi.org/10.1111/1751-7915.12880.

Bhattacharyya, P. N. & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350. https://doi.org/10.1007/s11274-011-0979-9.

Braccini, A. L., Mariucci, G. E. G., Suzukawa, A. K., Lima, L. H. S., & Piccinin, G. G. (2016). Co-inoculação e modos de aplicação de Bradyrhizobium japonicum e Azospirillum brasilense e adubação nitrogenada na nodulação das plantas e rendimento da cultura da soja. Scientia Agraria Paranaensis, 15, 27-35. https://doi.org/10.18188/sap.v15i1.10565.

Bulegon, L. G., Guimarães, V. F., Egewarth, V. A., Santos, M. G., Heling, A. L., Ferreira, S. D., Wengrat, A. P. G. S. & Battistus, A. G. (2016). Crescimento e trocas gasosas no período vegetativo da soja inoculada com bactérias diazotróficas. Nativa, 4, 277-286. https://doi.org/10.31413/nativa.v4i5.3215.

Carrasco-Espinosa, K., García-Cabrera, R. I., Bedoya-López, A., Trujillo-Roldán, M. A. & Valdez-Cruz, N. A. (2015). Positive effect of reduced aeration rate on growth and stereospecificity of DL-malic acid consumption by Azospirillum brasilense: improving the shelf life of a liquid inoculant formulation. Journal of Biotechnology, 195, 74-81. https://doi.org/10.1016/j.jbiotec.2014.12.020.

Chang W. S., Lee, H. I. & Hungria, M. (2015). Soybean Production in the Americas. In: Principles of Plant-Microbe Interactions. Springer, 393-400. https://doi.org/10.1007/978-3-319-08575-3_41.

Ferreira, E. B., Cavalcanti, P. P. & Nogueira, D. A. (2018). Pacote experimental designs. https://cran.r-project.org/web/packages/ExpDes.pt/ExpDes.pt.pdf.

Fibach-Paldi, S., Burdman, S. & Okon, Y. (2012). Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiology Letters, 326, 99-108. https://doi.org/10.1111/j.1574-6968.2011.02407.x.

França, C. R. R. S., Junior, M. A. L., Figueiredo, M. V. B., Stamford, N. P. & Silva, G. A. (2013). Viabilidade da conservação de rizóbios por condicionadores líquidos. Revista Ciência Agronômica, 44, 661-668.

Gomes, J. B. V., Curi, N., Motta, P. E. F., Ker, J. C., Marques, J. J. G. S. M. & Schulze, D. G. (2004). Análise de componentes principais de atributos físicos, químicos e mineralógicos de solos do bioma cerrado. Revista Brasileira de Ciências do Solo, 28, 137-153. https://doi.org/10.1590/S0100-06832004000100014.

Gopal, S. K. & Baby, A. (2016). Enhanced shelf life of Azospirillum and PSB through addition of chemical additives in liquid formulations. International Journal of Science, Environment and Technology, 5, 2023-2029.

Hair, J. F. J., Curi, N., Motta, P. E. F., Ker, J. C., Marques, J. J. G. S. M. & Schulze, D. G. (2009). Análise multivariada de dados. 6. ed. Porto alegre: Bookman.

Husson, F., Josse, J., Lê, S., & Mazet, J. (2020). Multivariate exploratory data analysis and data mining. http://factominer.free.fr.

Kaschuk, G., Hungria, M., Leffelaar, P. A., Giller, K. E. & Kuyper, T. W. (2010). Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biology, 12, 60-69. http://doi.org/10.1111/j.1438-8677.2009.00211.x.

Mohamed, S. S., Hassan, M. A. & Abdelgani, M. E. (2019). The shelf life of Rhizobial liquid inoculants amended with diferente polymeric additives. Australian Journal of Basic and Applied Sciences, 28-36. http://doi.org/10.22587/ajbas.2019.13.11.4.

Nehra, V., Saharan, B. S. & Choudhary, M. (2016). Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus, 5, 948. http://doi.org/10.1186/s40064-016-2584-8.

Pawar, P. U., Kumbhar, C. T., Patil, V. S. & Khot, G. G. (2018). Effect of co-inoculation of Bradyrhizobium japonicum and Pseudomonas fluorescens on growth, yield and nutrient uptake in soybean [Glycine max (L.) Merrill]. Crop Research, 53, 57-62.

Pioneer. (2004). Cuidados com a soja nas fases iniciais de crescimento. 2004. http://www.pioneersementes.com.br/media-center/artigos/43/cuidados-com-a-soja-nas-fases-iniciais-de-crescimento.

Praveen Biradar, B. J. & Santhosh, G.P. (2018). Cell protectants, adjuvants, surfactant and preservative and their role in increasing the shelf life of liquid inoculant formulations of Pseudomonas fluorescens. International Journal of Pure and Applied Bioscience. 6, 116-122. http://doi.org/10.18782/2320-7051.6821.

Polonenko, D. R., Scher, F. M., Kloepper, J. W., Singleton, C. A., Laliberte, M. & Zaleska, I. (1987). Effects of root colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Canadian Journal of Microbiology, 33, 498-503. https://doi.org/10.1139/m87-083.

Qurashi, A. W. & Sabri, A. N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43, p. 1183-1191. https://doi.org/10.1590/S1517-838220120003000046.

Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. Support functions and datasets for venables and ripley’s MASS. http://www.stats.ox.ac.uk/pub/MASS4/.

Sahu, P. K. & Brahmaprakash, G. P. (2016). Formulations of biofertilizers - Approaches and Advances. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, 179-198. https://doi.org/10.1007/978-81-322-2644-4_12.

Santhosh, G. P. (2015). Formulation and shelf life of liquid biofertilizer inoculants using cell protectants. International Journal of Rerearches in Biosciences, Agriculture and Technology, 2, 243-247.

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B. & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa Solos, 5ª ed.

Silva, J. B. L., Flores, M. E. P., Justino, F. B., Toledo, A. S., Pires, L. C., Pereira, E. G. & Dias, B. S. (2019). Propriedades fotossintéticas e trocas gasosas de folhas de plantas soja (Glycine max) sob elevada [CO2] num cenário de mudança climática. Brazilian Journal of Development, 5, 9288-9302. http://doi.org/10.34117/bjdv5n7-123.

Son, T. T. N., Diep, C. N. & Giang, T. T. M. (2006). Effect of Bradyrhizobia and phosphate solubilizing bacteria application on soybean in rotational system in the Mekong delta. Omonrice, 14, 48-57.

Souza, F. H. M., Viola, M. R., Avanzi, J. C., Giongo, M. & Vieira Filho, M. (2019). Thornthwaite’s Climate Regionalization for the State of Tocantins, Brazil. Floresta, 49, 783-792. http://dx.doi.org/10.5380/rf.v49i4.59188.

Taiz, L., Zeiger, E., Moller, I. M. & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Artmed Editora.

Team, R. C. R. (2020). A language and environment for statistical computing. http://www.r-project.org.

Tewari, S. & Arora, N. K. (2014). Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions. Cellular e Molecular Biology, 60, 73-81. https://doi.org/10.14715/cmb/2014.60.5.13.

Widawati, S. & Suliasih. (2018). The effect of plant growth promoting rhizobacteria (PGPR) on germination and seedling growth of Sorghum bicolor L. Moench. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/166/1/012022.

Zhao, L., Xu, Y. & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49, 269-278. https://doi/10.1016/j.bjm.2017.06.007.

Downloads

Published

21/05/2022

How to Cite

SOUZA, M. C. .; CHAGAS, L. F. B. .; MARTINS, A. L. L. .; LIMA, C. A. .; MOURA, D. M. de O. .; LOPES, M. B.; FERREIRA, A. L. L. .; SOUSA, K. Ângela O. de .; CHAGAS JUNIOR, A. F. . Biopolymers in the preservation of rhizobacteria cells and efficiency in soybean inoculation. Research, Society and Development, [S. l.], v. 11, n. 7, p. e21911729688, 2022. DOI: 10.33448/rsd-v11i7.29688. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29688. Acesso em: 23 nov. 2024.

Issue

Section

Agrarian and Biological Sciences