Parallel bar device with vibratory stimulus controlled via Human Machine Interface (HMI) for Neuropathologies rehabilitation

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.29964

Keywords:

Whole Body Vibrations; Neuropathologies; Gait and Balance Rehabilitation; Vibrating Platform; Retrofit.

Abstract

Neurological rehabilitation is essential for maintaining and increasing the motor function of patients affected by neuropathologies. Some impairments are commonly related to loss of muscle strength, balance and walking ability. Recently, the use of mechanical vibrations associated with conventional treatment to enhance gains in motor rehabilitation has emerged. It is suggested that vibrations increase the motoneurons excitability, contributing to the gait performance, balance and proprioception, in addition to decreasing spasticity. This study aims to implement a retrofit of a parallel bar device with vibratory stimulus and to validate the new system. This improvement targeted at increasing robustness, better mass distribution and an HMI development. To validate the system, engineering tests were performed that included the frequency measurement, vibration intensity, oscillation amplitude and sound emission, besides the system usability measurement by health professionals with the SUS scale. The engineering tests revealed that the improved device allows several protocols execution, since the control variables remain stable regardless of the load application point and that the sound noise is in accordance with Brazilian safety regulations. The device was evaluated by health professionals as “Best Imaginable” on the SUS scale. Through the retrofit performed, the device became more efficient and safer, optimizing this tool for clinical practice.

References

Alashram, A. R, Padua, E, & Annino, G. (2019). Effects of whole-body vibration on motor impairments in patients with neurological disorders: a systematic review. Am J Phys Med Rehabil. 98(12), 1084–1098. https://doi.org/10.1097/PHM.0000000000001252

Bangor A, Kortum P, & Miller J. (2009). Determining what individual SUS scores mean: adding an adjective rating scale. J Usabil Stud. 4(3), 114-123.

Bautmans, I, Van Hees, H, Lemper, J. C, & Mets, T. (2005). The feasibility of whole body vibration in institutionalized elderly person and its influence on muscle performance, balance and mobility: a randomized controlled trial. BMC Geriatrics. 5-17. https://doi.org/10.1186/1471-2318-5-17

Bitkina, O. V., Kim, H. K, & Park, J. (2020). Usability and user experience of medical devices: An overview of the current state, analysis methodologies, and future challenges. International Journal of Industrial Ergonomics. 76. https://doi.org/10.1016/j.ergon.2020.102932

BROOKE, J. (1996). SUS: A "quick and dirty" usability scale. Usability Evaluation in Industry. London: Taylor and Francis.

Chan, K. S, Liu, C. W, Chen, T. W, Weng, M. C, Huang, M. H., & Chen, C. H. (2012). Effects of a single session of whole body vibration on ankle plantarflexion spasticity and gait performance in patients with chronic stroke: a randomized controlled trial. Clin Rehabil. 26. https://doi.org/10.1177/0269215512446314

Chang, C. M, Tsai, C. H, Lu, M. K, Tseng, H. C, Lu, G, Liu, B. L, & Lin, H. C. (2022). The neuromuscular responses in patients with Parkinson’s disease under different conditions during whole-body vibration training. BMC Complementary Medicine and Therapies. 22(2). https://doi.org/10.1186/s12906-021-03481-1

Cotoros, D, Şerban, I, Drugă, C, & Stanciu, A. (2021). Human Factor Balance Under the Influence of Variable Sound Frequency and Orientation. Springer Proceedings in Physics. 251.

Gloeckl, R, Schneeberger, T, Leitl, D, Reinold, T, Nell, C, Jarosch, I, Kenn, K, & Koczulla, A. (2021). Whole-body vibration training versus conventional balance training in patients with severe COPD—a randomized, controlled trial. Respiratory Research. 22(138), 1-10. https://doi.org/10.1186/s12931-021-01688-x

Guadarrama Molina, E, Barrón Gámez, C. E, Estrada Bellmann, I, Meléndez Flores, J. D, Ramírez Castañeda, P, Hernández Suárez, R. M. G, Menchaca Pérez, M, & Salas Fraire, O. (2021). Comparison of the effect of whole-body vibration therapy versus conventional therapy on functional balance of patients with Parkinson’s disease: adding a mixed group. Acta Neurologica Belgica. 121, 721-728. https://doi.org/10.1007/s13760-020-01439-7

Hidi, S. (1990). Interest and Its Contribution as a Mental Resource for Learning. Review of Educational Research. 60(4), 549–571. https://doi.org/10.3102/00346543060004549

Huang, M, & Pang, M. Y. C. (2019). Muscle activity and vibration transmissibility during whole-body vibration in chronic stroke. Scand J Med Sci Sports. 29, 816–825. https://doi.org/10.1111/sms.13408

Hussein, S, Schmidt, H, & Krüger, J. (2009). Adaptive control of an end-effector based electromechanical gait rehabilitation device. IEEE. 11th International Conference on Rehabilitation Robotics, 366 - 371. https://doi.org/10.1109/ICORR.2009.5209485

Jaspert, D, Eber, M, Eckhardt, A, & Poeppelbuss, J. (2021). Smart retrofitting in manufacturing: A systematic review. Journal of Cleaner Production. 312. https://doi.org/10.1016/j.jclepro.2021.127555

Kim, J. W, & Lee, J. H. (2021). Effect of whole-body vibration therapy on lower extremity function in subacute stroke patients. Journal of exercise rehabilitation. 17(3), 158–163. https://doi.org/10.12965/jer.2142246.123

Ministério do Trabalho e Previdência. (2022). NR 10 - SEGURANÇA EM INSTALAÇÕES E SERVIÇOS EM ELETRICIDADE. https://www.gov.br/trabalho-e-previdencia/pt-br/composicao/orgaos-especificos/secretaria-de-trabalho/inspecao/seguranca-e-saude-no-trabalho/normas-regula mentadoras/nr-10.pdf.

Ministério do Trabalho e Previdência. (2022). NR 15 – ATIVIDADES E OPERAÇÕES INSALUBRES. https://www.gov.br/ trabalho-e-previdencia/pt-br/composicao/orgaos-especificos/secretaria-de-trabalho/ inspecao/seguranca-e-saude-no-trabalho/normas-regulamentadoras/nr-15-anexo-01.pdf.

Miyara, K, Matsumoto, S,Uema, T, Hirokawa, T, Noma, T, Shimodozono, M, & Kawahira. (2014). Feasibility of using whole body vibration as a means for controlling spasticity in post-stroke patients: A pilot study. Complementary Therapies in Clinical Practice. 20, 70-73. https://doi.org/10.1016/j.ctcp.2013. 10.002

Moggio, L, Sire, A, Marotta, N, Demeco, A, & Ammendolia, A. (2021). Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews. Disability and Rehabilitation. 1-10. https://doi.org/10.1080/09638288.2021.1946175

Morais, A. V., Tomaz JR, G, Lazzareschi, L, Almeida, D. V, Santos, M. F, Boschi, S. R. M. S, Martini, S. C, Scardovelli, T. A, & Silva, A. P. (2019). Whole-body vibration on parallel bar device for gait and balance rehabilitation in stroke patients. Res. Biomed. Eng. 35, 123-129. https://doi.org/10.1007/s42600-019-00014-1

Morley, J, & Sikorski, D. (2018). Effect of whole body vibration on cervical (neck) proprioception in young, healthy individuals serving as their own control: a pilot study. J Can Chiropr Assoc. 62(1), 42-55.

Nielsen, J, & Landauer, T. K. (1993). A Mathematical Model of the Finding of Usability Problems. Proceedings of the INTERACT '93. 206-213. https://doi.org/10.1145/169059.169166

Orr, R. (2015). The effect of whole body vibration exposure on balance and functional mobility in older adults: a systematic review and meta-analysis. Maturitas. 80(4), 342-358. https://doi.org/10.1016/j.maturitas.2014.12.020

Park, Y. J, Park, S. W, & Lee, H. S. (2018). Comparison of the Effectiveness of Whole Body Vibration in Stroke Patients: A Meta-Analysis. BioMed Research International, 2018. https://doi.org/10.1155/2018/5083634

Pena, S. B, Guimarães, H. C. Q. C. P, Lopes, J. L, Guandalini, L. S, Taminato, M, Barbosa, D. A, & Barros, A. L. B. L. (2019). Medo de cair e o risco de queda: revisão sistemática e metanálise. Acta Paulista de Enfermagem. 32(4), 456-463. https://doi.org/10.1590/1982-0194201900062

RAO, S. (2008). Vibrações Mecânicas. 4.ed. São Paulo: Pearson Prentice Hall.

Rauch, F. (2009). Vibration Therapy. Mac Keith Press. Developmental Medicine e Child Neurology. 51, 166-168. https://doi.org/10.1111/j.1469-8749.2009.03418.x

Tenório, J. M, Cohrs, F. M, Sdepanian, V. L, Pisa, I. T, & Marin, H. F. (2011). Desenvolvimento e Avaliação de um Protocolo Eletrônico para Atendimento e Monitoramento do Paciente com Doença Celíaca. Revista de Informática Teórica e Aplicada, 17(2), 210–220. https://doi.org/10.22456/2175-2745.12119

Totten, G. E. (2006). Handbook of Lubrication and Tribology: Application and Maintenance. 2nd ed. CRC Press. v.1.

Wolfsegger, T, Assar, H, & Topakian, R. (2014). 3-week whole body vibration does not improve gait function in mildly affected multiple sclerosis patients – a randomized controlled trial. Journal of Neurological Sciences. 347, 119-123. https://doi.org/10.1016/j.jns.2014.09.030

Xie, L, Yi, S. X, Peng, Q. F, Liu, P, & Jiang, H. (2021). Retrospective study of effect of whole-body vibration training on balance and walking function in stroke patients. World journal of clinical cases. 9(22), 6268–6277. https://doi.org/10.12998/wjcc.v9.i22.6268

Yang, F, Wen, P. S, Bethoux, F, & Zhao, Y. (2021). Effects of Vibration Training on Cognition and Quality of Life in People with Multiple Sclerosis. Int J MS Care. https://doi.org/10.7224/1537-2073.2020-095

Zancan, M. D. (2011). Controladores programáveis. Santa Maria: Universidade Federal de Santa Maria.

Zhang, L. Q, Xu, D, Makhsous, M, & Lin, M. (2000). Stiffness and viscous damping of the human leg. The American Society of Biomechanics. 144-145.

Published

24/05/2022

How to Cite

MORAIS, A. V. de .; BOSCHI, S. R. M. da S. .; MOURA, L. de A. .; MONIZ, Y. F. .; MARTINI, S. C.; SCARDOVELLI, T. A.; SILVA, A. P. da . Parallel bar device with vibratory stimulus controlled via Human Machine Interface (HMI) for Neuropathologies rehabilitation. Research, Society and Development, [S. l.], v. 11, n. 7, p. e28411729964, 2022. DOI: 10.33448/rsd-v11i7.29964. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29964. Acesso em: 25 apr. 2024.

Issue

Section

Engineerings