Hemodynamic and respiratory changes from a continuous infusion of dexmedetomidine in general anesthesia in dogs: a systematic review and meta-analysis

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.29980

Keywords:

Alpha-2 agonist; Intravenous Anesthesia; Dogs; Adjuvants; Bradycardia; Health teaching.

Abstract

Dexmedetomidine uses widely in veterinary medicine. This drug achieves analgesic, sedative, and muscular relaxation, and can be administered intravenously in continuous infusion with or without an initial bolus. But cardiovascular and respiratory alterations had been considered. This review aimed to analyze the effect of cardiovascular and respiratory in dogs under continuous infusion of dexmedetomidine. For the selection of studies, words like dogs, dexmedetomidine, and continuous infusion, were inserted into the Pubmed and Embase platforms. And 11 studies were admitted, with pre-established inclusion and exclusion criteria, to perform the meta-analysis. The articles used dexmedetomidine at doses ranging from 0.1-4.5 µg/kg and different associations. The reduction of general anesthetics with dexmedetomidine alone was 11% to 69%. And when associated with another drug can reduce the general anesthetic by 86%. In the cardiovascular system, dexmedetomidine increased mean arterial pressure and decreased heart rate in a dose-dependent (P < 0.00). There was also a decrease in cardiac output and index (P < 0.00). In respect of respiratory parameters, there were no significant differences in respiratory rate, carbon dioxide, and oxygen in arterial blood. In conclusion, dexmedetomidine decreases the consumption of general anesthetics. Increases mean arterial pressure while reducing heart rate, output, and cardiac index in a dose-dependent manner without significantly altering respiratory function.

References

Acevedo-Arcique, C. M., Ibancovichi, J. A., Chavez, J. R. et al. (2014). Lidocaine, dexmedetomidine and their combination reduce isoflurane minimum alveolar concentration in dogs. PLoS One, 9(9), e106620.

Afonso, J. & Reis, F. (2012). Dexmedetomidine: current role in anesthesia and intensive care. Revista Brasileira de Anestesiologia, 62(1), 118-133.

Ahmad, R. A., Amarpal, A., Kinjavdekar, P. et al. (3013) Potential use of dexmedetomidine for different levels of sedation, analgesia and anaesthesia in dogs. Veterinarni Medicina, 58(2), 87-95.

Akashi, N., Murahata, Y., Kishida, H. et al. (2020). Effects of constant rate infusions of dexmedetomidine, remifentanil and their combination on minimum alveolar concentration of sevoflurane in dogs. Veterinary Anesthesia Analgesia, 47(4), 490-498.

Bae, H. B. (2017) Dexmedetomidine: an attractive adjunct to anesthesia. Korean Journal of Anesthesiology, 70(4), 375-376.

Baratta, M. T., Zaya, M. T., White, J. A. et al. (2010). Canine CYP2B11 metabolizes and is inhibited by anesthetic agents often co-administered in dogs. Journal of Veterinary Pharmacology and Therapeutics, 33(1), 50-55.

Bloor, B. C., Frankland, M., Alper, G. et al. (1992). Haemodynamic and sedative effects of dexmedetomidine in dog. Journal of Pharmacology and Experimental Therapeutics, 263(2), 690-697.

Bousquet, P., Hudson, A., García-Sevilla, J. A. et al. (2020). Imidazoline receptor system: the past, the present, and the future. Pharmacological Reviews, 72(1), 50-79.

Calzada, C. B. & Artinano, A. A. (2001). Alpha-Adrenoceptor subtypes. Pharmacological Research, 44(4), 195-208.

Congdon, J. M., Marquez, M., Niyom, S. et al. (2013). Cardiovascular, respiratory, electrolyte and acid-base balance during continuous dexmedetomidine infusion in anesthetized dogs. Veterinary Anaesthesia and Analgesia, 40(5), 464-471.

Di Bella, C., Skouropoulou D., Stabile, M. et al. (2020). Respiratory and hemodynamic effects of 2 protocols of low-dose infusion of dexmedetomidine in dogs under isoflurane anesthesia. Canadian Journal of Veterinary Research, 84(2), 96-107.

Drees, R., Johnson, R. A., Stepien, R. L. et al. (2015). Quantitative planar and volumetric cardiac measurements using 64 MDCT and 3T MRI vs. standard 2D and M-mode echocardiography: does anesthetic protocol matter? Veterinary Radiology & Ultrasound, 5(6), 638-657.

Eason, M. G., Kurose, H., Holt, B. D. et al. (1992). Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. Journal of Biological Chemistry, 267(22), 15795-15801.

Ebner, L. S., Lerche, P., Bednarski, R. M. et al. (2013). Effect of dexmedetomidine, morphine-lidocaine-ketamine, and dexmedetomidine-morphine-lidocaine-ketamine constant rate infusions on the minimum alveolar concentration of isoflurane and bispectral index in dogs. American Journal of Veterinary Research, 74(7), 963-970.

Farag, E., Argalious, M., Abd-Elsayed, A. et al. (2012). The use of dexmedetomidine in anesthesia and intensive care: a review. Current Pharmaceutical Design, 18(38), 6257-6265.

Farsanga, C. & Kapocsia, J. (1999). Imidazoline receptors: from discovery to antihypertensive therapy (facts and doubts). Brain Research Bulletin, 49(5), 317-331.

Flacke, W. E., Flacke, J. W., Bloor, B. C. et al. (1993). Effects of dexmedetomidine on systemic and coronary haemodynamics in the anesthetized dog. Journal of Cardiothoracic and Vascular Anesthesia, 7(1), 41-49.

Giovannitti, J. A. Jr., Thoms, S. M., Crawford, J. J. (2015). Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesthesia Progress, 62(1), 31-39.

Granholm, M., McKusick, B. C., Westerholm, F. C. et al. (2006). Evaluation of the clinical efficacy and safety of dexmedetomidine or medetomidine in cats and their reversal with atipamezole. Veterinary Anaesthesia and Analgesia, 33(4), 214-223.

Grape, S., Kirkham, K. R., Frauenknecht, J. et al. (2019) Intra-operative analgesia with remifentanil vs. dexmedetomidine: a systematic review and meta-analysis with trial sequential analysis. Anaesthesia, 74(6), 793-800.

Gutierrez-Blanco E., Victoria-Mora, J. M., Ibancovichi-Camarillo, J. Á. et al. (2013). Evaluation of the isoflurane-sparing effects of fentanyl, lidocaine, ketamine, dexmedetomidine, or the combination lidocaine-ketamine-dexmedetomidine during ovariohysterectomy in dogs. Veterinary Anesthesia Analgesia, 40(6), 599-609.

Gyires, K., Zádori, Z. S., Török, T. et al. (2009). Alpha2-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochemistry International, 55(7), 447-453.

Hall, L. W., Lagerweij, E., Nolan, A. M. et al. (1994). The effect of medetomidine on the pharmacokinetics of propofol in dogs. American Journal of Veterinary Research, 55(1), 116-120.

Hall, L. W., Lagerweij, E., Nolan, A. M. et al. (1997). Disposition of propofol after medetomidine premedication in beagle dogs. Journal of Veterinary Anaesthesia, 24(1), p.23-29.

Hector, R. C., Rezende, M. L., Khursheed, R. M. et al. (2017). Effects of constant rate infusions of dexmedetomidine or MK467 on the minimum alveolar concentration of sevoflurane in dogs. Veterinary Anaesthesia and Analgesia, 44(4), 755-765.

Hendrickx, J. F. A., Eger, E. I., Sonner, J. M. et al. (2008). Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesthesia & Analgesia, 107(2), 494-506.

Herbert, G. L., Bowlt, K. L., Ford-Fennah, V. et al. (2012). Alfaxalone for total intravenous anaesthesia in dogs undergoing ovariohysterectomy: a comparison of premedication with acepromazine or dexmedetomidine. Veterinary Anaesthesia and Analgesia, 40(2), 124-133.

Honkavaara, J. M., Restitutti, F., Raekallio, M. R. et al. (2011). The effects of increasing doses of MK-467, a peripheral alpha2-adrenergic receptor antagonist, on the cardiopulmonary effects of intravenous dexmedetomidine in conscious dogs. Journal of Veterinary Pharmacology and Therapeutics, 34(4), 332-337.

Jin, C., Cheng, Y., Sun, Y. et al. (2019). The effects of continuous intravenous infusion of dexmedetomidine and remifentanil on postoperative pain: a systematic review and meta-analysis. International Journal of Clinical and Experimental Medicine, 12(1), 1165-1178.

Kamibayashi, T. & Maze, M. (2000). Clinical uses of alpha2-adrenergic agonists. Anesthesiology, 93(5), 1345-1349, 2000.

Kamibayashi, T., Hayashi, Y., Mammoto, T. et al. (1995). Role of the vagus nerve in the antidysrhythmic effect of dexmedetomidine on halothane/epinephrine dysrhythmias in dogs. Anesthesiology, 83(5), 992-999.

Kamibayashi, T., Mammoto, T., Hayashi Y. et al. (1995). Further characterization of the receptor mechanism involved in the antidysrhythmic effect of dexmedetomidine on halothane/epinephrine dysrhythmias in dogs. Anesthesiology, 83(5), 1082-1089.

Kellihan, H. B., Stepien, R L., Hassen, K. M. et al. (2015). Sedative and echocardiographic effects of dexmedetomidine combined with butorphanol in healthy dogs. Journal of Veterinary Cardiology, 17(4), 282-292.

Khan, Z. P., Ferguson, C. N., Jones, R. M. (1999). Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia, 54(2), 146-165.

Kuusela, E., Raekallio, M., Anttila M. et al. (2000). Clinical effects and pharmacokinetics of medetomidine and its enantiomers in dogs. Journal of Veterinary Pharmacology and Therapeutics, 23(1), 15-20.

Kuusela, E., Vainio, O., Short, C. E. et al. (2003). A comparison of propofol infusion and propofol/isoflurane anaesthesia in dexmedetomidine premedicated dogs. Journal of Veterinary Pharmacology and Therapeutics, 26(3), 199-204.

Lagerweija, E., Hall, L. W., Nolanc, A. M. (1993). Effects of medetomidine premedication on propofol infusion anaesthesia in dogs. Journal of Veterinary Anaesthesia, 20(1), 78-81.

Lawrence, C. J., Prinzen, F. W., Lange, S. (1996). The effect of dexmedetomidine on the balance of myocardial energy requirement and oxygen supply and demand. Anesthesia & Analgesia, 82(3), 544–550.

Lervik, A., Haga, H. A., Ranheim, B. et al. (2012). The influence of a continuous rate infusion of dexmedetomidine on the nociceptive withdrawal reflex and temporal summation during isoflurane anaesthesia in dogs. Veterinary Anaesthesia and Analgesia, 39(4), 414-425.

Lervik, A., Raszplewicz, J., Ranheim B. et al. (2018). Dexmedetomidine or fentanyl? Cardiovascular stability and analgesia during propofol–ketamine total intravenous anaesthesia in experimental pigs. Veterinary Anaesthesia and Analgesia, 45(3), 295-308.

Li, A., Yuen, V. M. Y., Goulay-Dufay, S. et al. (2016). Pharmacokinetics and pharmacodynamics of dexmedetomidine. Drug Development and Industrial Pharmacy, 42(12), 1917-1927.

Lin, G., Robben, J. H., Murrell, J. C. et al. (2008) Dexmedetomidine constant rate infusion for 24 hours during and after propofol and isoflurane anaesthesia in dogs. Veterinary Anaesthesia and Analgesia, 35(2), 141-153.

Moher, D., Shamseer, L., Clarke, M. et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMAP) 2015 statement. Systematic reviews, 4(1), 1-9.

Moran-Muñoz, R., Ibancovichi, J. A., Gutierrez-Blanco, E. et al. (2014). Effects of lidocaine, dexmedetomidine or their combination on the minimum alveolar concentration of sevoflurane in dogs. Journal of Veterinary Medical Science, 76(6), 847-853.

Moran-Muñoz, R., Valverde, A., Ibancovichi, J. A. et al. (2017). Cardiovascular effects of constant rate infusions of lidocaine, lidocaine and dexmedetomidine, and dexmedetomidine in dogs anesthetized at equipotent doses of sevoflurane. Canadian Veterinary Journal, 58(7), 729-734.

Murrel, J. & Hellerbrekers, J. L. (2005). Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Veterinary Anaesthesia and Analgesia, 32(3), 117-127.

Navarrete, R., Quirós-Carmona, S., Granados, M. D. M. et al. (2016). Effect of dexmedetomidine constant rate infusion on the bispectral index during alfaxalone anaesthesia in dogs. Veterinary Anaesthesia and Analgesia, 43(4). 397-404.

Pascoe, P. J. (2015). The cardiopulmonary effects of dexmedetomidine infusions in dogs during isoflurane anesthesia. Veterinary Anaesthesia and Analgesia, 42(4), 360-368.

Pascoe, P. J., Raekallio, M., Kuusela, E. et al. (2006). Changes in the minimum alveolar concentration of isoflurane and some cardiopulmonary measurements during three continuous infusion rates of dexmedetomidine in dogs. Veterinary Anaesthesia and Analgesia, 33(2), 97-103.

Pereira, M. G. & Galvão T. F. (2014) Heterogeneidade e viés de publicação em revisões sistemáticas. Epidemiologia e serviços de saúde, 23(4), 775-778.

Proctor, L. T., Schmeling, W. T., Roerig, D. et al. (1991). Oral dexmedetomidine attenuates hemodynamic responses during emergence from general anesthesia in chronically instrumented dogs. Anesthesiology, 74(1), 108-14.

Pypendop, B. H., Bartera, L. S., Stanley, S. D. et al. (2011). Hemodynamic effects of dexmedetomidine in isoflurane-anesthetized cats. Veterinary Anaesthesia and Analgesia, 38(6), 555-567.

Quirós-Carmona, S., Navarrete-Calvo, R., Granados, M. M. et al. (2014). Cardiorespiratory and anaesthetic effects of two continuous rate infusions of dexmedetomidine in alfaxalone anaesthetized dogs. Research in Veterinary Science, 97(1), 132-139.

Richa, F. & Yazigi, A. (2007). Effect of dexmedetomidine on blood pressure and bleeding in maxillo-facial surgery. European Journal of Anaesthesiology, 24(11), 985-856.

Rodrigues, C. & Ziegelmann, P. (2010). Metanálise: um guia prático. Clinical & Biomedical Research, 30(4), 435-446.

Sabbe, M. B., Penning, J. P., Ozaki, G. T. et al. (1994). Spinal and systemic action of the alpha 2 receptor agonist dexmedetomidine in dogs: antinociception and carbon dioxide response. Anesthesiology, 80(5), 1057–1072.

Salmenperä, M. T., Szlam, F., Hug, C. C. J. R. (1994). Anesthetic and hemodynamic interactions of dexmedetomidine and fentanyl in dogs. Anesthesiology, 80(4), 837-846.

Santos, E. & Cunha, M. (2013). Interpretação crítica dos resultados estatísticos de uma metaanálise: Estratégias metodológicas. Millenium, 44(18), 85-98.

Smith, C. K., Seddighi, R., Cox, S. K. et al. (2017). Effect of dexmedetomidine on the minimum infusion rate of propofol preventing movement in dogs. Veterinary Anesthesia and Analgesia, 44(6), 1287-1295.

Snidvongs, K., Tingthanathikul, W., Aeumjaturapat, S. et al. (2015). Dexmedetomidine improves the quality of the operative field for functional endoscopic sinus surgery: systematic review. Journal of Laryngology and Otology, 129(3), 8-13.

Souza, M. T., Silva, M. D., Carvalho, R. (2010). Revisão integrativa: o que é e como fazer. Einstein, 8(1), 102-6.

Tafur, B. L. A. (2017). The hidden world of drug interactions in anesthesia. Revista Colombiana de Anestesiología, 45(3), 216-223.

Taylor, C. W. (1990). The role of G proteins in transmembrane signalling. Biochemical Journal, 272(1), 1–13.

Uilenreef, J. J., Murrell, J. C., McKusick, B. C. et al. (2008). Dexmedetomidine continuous rate infusion during isoflurane anaesthesia in canine surgical patients. Veterinary Anaesthesia and Analgesia, 35(1), 1-12.

Valverde, A. & Skelding, A. M. (2019). Alternatives to Opioid Analgesia in Small Animal Anesthesia. Veterinary Clinics of North America: Small Animal Practice, 49(6), 1013-1027.

Voigt, A. M., Bergfeld, C., Beyerbach, M. et al. (2013). Effects of isoflurane with and without dexmedetomidine or remifentanil on heart rate variability before and after nociceptive stimulation at different multiples of minimum alveolar concentration in dogs. American Journal of Veterinary Research, 74(5), 665-671.

Wang, H., Hung, C., Lee, W. et al. (2016). Effects of intravenous dexmedetomidine on cardiac characteristics measured using radiography and echocardiography in six healthy dogs. Veterinary Radiology & Ultrasound, 57(1), 8-15.

Xu, H., Aibiki, M., Seki, K. et al. (1998). Effects of Dexmedetomidine, an alpha 2-adreno-receptor agonist, on renal sympathetic nerve activity, blood pressure, heart rate and central venous pressure in urethane-anesthetized rabbits. Journal of the Autonomic Nervous System, 71(1), 48-54.

Published

29/05/2022

How to Cite

BOFF, G. A.; LIMA, C. M. de; NOBRE, M. O.; GEHRCKE, M. I. Hemodynamic and respiratory changes from a continuous infusion of dexmedetomidine in general anesthesia in dogs: a systematic review and meta-analysis. Research, Society and Development, [S. l.], v. 11, n. 7, p. e39611729980, 2022. DOI: 10.33448/rsd-v11i7.29980. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29980. Acesso em: 4 jul. 2022.

Issue

Section

Agrarian and Biological Sciences