Role of gut microbiota in SARS-CoV-2 infection and the beneficial effects of probiotics on the management of the disease

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.30040

Keywords:

COVID-19; Renin-angiotensin system; Inflammation; Vaccines.

Abstract

Objective: The purpose of the present study was to show information about the effects of probiotics on inflammatory and Renin Angiotensin System (RAS) balance, and their potential therapeutic role in the management of COVID-19. Methodology: This is a narrative literature review and the databases used were Google Scholar and Medline/Pubmed. Results: Some components of the intestinal microbiota, including Coprobacillus, Clostridium ramosum, Morganella morganii, and Streptococcus infantile were identified as positively correlated with the severity of the disease, while Faecalibacterium prausnitzii showed a negative correlation with SARS-CoV-2 infection. Probiotics emerge as a therapeutic alternative for the treatment of inflammatory conditions due to their effects on the maintenance of gastrointestinal integrity and repair properties. More specifically, probiotics from Bifidobacterium e Lactobacillus genus show benefits in the management of respiratory diseases and might enhance vaccine immunogenicity. Conclusion: The present study demonstrates the complementary therapeutic potential of probiotics in the treatment of respiratory infections, such as COVID-19. Beyond that, considering the diversity of probiotic strains, the evaluations already carried out and the data available in the literature, the present study points to the need for complementary studies to understand the mechanisms related to the effects of probiotics on COVID-19.

References

Abdel-Hamed, E. F., Ibrahim, M. N., Mostafa, N. E., Moawad, H. S. F., Elgammal, N. E., Darwiesh, E. M., El-rafey, D. S., ElBadawy, N. E., Al-Khoufi, E. A., & Hindawi, S. I. (2021). Role of interferon gamma in SARS-CoV-2-positive patients with parasitic infections. Gut Pathogens, 13(1), 1–7. https://doi.org/10.1186/s13099-021-00427-3

Adak, A., & Khan, M. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Science, 76, 473–493.

Akour, A. (2020). Probiotics and COVID‐19: is there any link? Letters in Applied Microbiology, 71(3), 229–234. https://doi.org/10.1111/lam.13334

Aktas, B., & Aslim, B. (2020). Gut-lung axis and dysbiosis in COVID-19. Turkish Journal of Biology, 44(3), 265–272. https://doi.org/10.3906/biy-2005-102

Almada, C. N. De, Almada, C. N. De, Martinez, R. C. R., & Sant’Ana, A. de S. (2015). Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-015-6582-5

Antunes, A. E. C., Vinderola, G., Santos, D. X., & Sivieri, K. (2020). Potential contribution of beneficial microbes to face the COVID-19 pandemic. Food Reasearch International, 136.

Azad, M. A. K., Sarker, M., & Wan, D. (2018). Immunomodulatory Effects of Probiotics on Cytokine Profiles. BioMed Research International, 2018. https://doi.org/10.1155/2018/8063647

Barssotti, L., Abreu, I. C. M. E., Brandão, A. B. P., Albuquerque, R. C. M. F., Ferreira, F. G., Salgado, M. A. C., Dias, D. D. S., De Angelis, K., Yokota, R., Casarini, D. E., Souza, L. B., Taddei, C. R., & Cunha, T. S. (2021). Saccharomyces boulardii modulates oxidative stress and renin angiotensin system attenuating diabetes-induced liver injury in mice. In Scientific Reports (Vol. 11, Issue 1). https://doi.org/10.1038/s41598-021-88497-w

Battaglini, D., Robba, C., Fedele, A., Trancǎ, S., Sukkar, S. G., Di Pilato, V., Bassetti, M., Giacobbe, D. R., Vena, A., Patroniti, N., Ball, L., Brunetti, I., Torres Martí, A., Rocco, P. R. M., & Pelosi, P. (2021). The Role of Dysbiosis in Critically Ill Patients With COVID-19 and Acute Respiratory Distress Syndrome. Frontiers in Medicine, 8(June), 1–19. https://doi.org/10.3389/fmed.2021.671714

Baud, D., Dimopoulou Agri, V., Gibson, G. R., Reid, G., & Giannoni, E. (2020). Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Frontiers in Public Health, 8(May), 1–5. https://doi.org/10.3389/fpubh.2020.00186

Belkaid, Y. and T. H. (2015). Role of the Microbiota in Immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011.Role

Benigni, A., Corna, D., Zoja, C., Sonzogni, A., Latini, R., Salio, M., Conti, S., Rottoli, D., Longaretti, L., Cassis, P., Morigi, M., Coffman, T. M., & Remuzzi, G. (2009). Disruption of the Ang II type 1 receptor promotes longevity in mice. The Journal of Clinical Investigation, 119(3), 524–530. https://doi.org/10.1172/JCI36703

Bottari, B., Castellone, V., & Neviani, E. (2021). Probiotics and Covid-19. International Journal of Food Sciences and Nutrition, 72(3), 293–299. https://doi.org/10.1080/09637486.2020.1807475

Britton, G. J., Chen-Liaw, A., Cossarini, F., Livanos, A. E., Spindler, M. P., Plitt, T., Eggers, J., Mogno, I., Gonzalez-Reiche, A. S., Siu, S., Tankelevich, M., Grinspan, L. T., Dixon, R. E., Jha, D., van de Guchte, A., Khan, Z., Martinez-Delgado, G., Amanat, F., Hoagland, D. A., … Faith, J. J. (2021). Limited intestinal inflammation despite diarrhea, fecal viral RNA and SARS-CoV-2-specific IgA in patients with acute COVID-19. Scientific Reports, 11(1), 13308. https://doi.org/10.1038/s41598-021-92740-9

Buts, J.-P. (1999). Mechanisms of Action of Biotherapeutic Agents. Biotherapeutic Agents and Infectious Diseases, 27–46. https://doi.org/10.1007/978-1-59259-711-6_2

Campione, E., Cosio, T., Rosa, L., Lanna, C., Girolamo, S. Di, Gaziano, R., Valenti, P., & Bianchi, L. (2020). Lactoferrin as protective natural barrier of respiratory and intestinal mucosa against coronavirus infection and inflammation. International Journal of Molecular Sciences, 21(14), 1–14. https://doi.org/10.3390/ijms21144903

Carter, C. S., Morgan, D., Verma, A., Lobaton, G., Aquino, V., Sumners, E., Raizada, M., Li, Q., & Buford, T. W. (2020). Therapeutic delivery of ang(1-7) via genetically modified probiotic: A dosing study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 75(7), 1299–1303. https://doi.org/10.1093/gerona/glz222

Ceccarelli, G., Borrazzo, C., Pinacchio, C., Santinelli, L., Innocenti, G. Pietro, Cavallari, E. N., Celani, L., Marazzato, M., Alessandri, F., Ruberto, F., Pugliese, F., Venditti, M., Mastroianni, C. M., & d’Ettorre, G. (2021). Oral Bacteriotherapy in Patients With COVID-19: A Retrospective Cohort Study. Frontiers in Nutrition, 7(January), 1–8. https://doi.org/10.3389/fnut.2020.613928

Cenit, M. C., Sanz, Y., & Codoñer-Franch, P. (2017). Influence of gut microbiota on neuropsychiatric disorders. World Journal of Gastroenterology, 23(30), 5486–5498. https://doi.org/10.3748/wjg.v23.i30.5486

Chattopadhyay, I., & Shankar, E. M. (2021). SARS-CoV-2-Indigenous Microbiota Nexus: Does Gut Microbiota Contribute to Inflammation and Disease Severity in COVID-19? Frontiers in Cellular and Infection Microbiology, 11(March), 1–8. https://doi.org/10.3389/fcimb.2021.590874

Chen, J., Vitetta, L., Henson, J. D., & Hall, S. (2021). The intestinal microbiota and improving the efficacy of COVID-19 vaccinations. Journal of Functional Foods, 87(January), 104850. https://doi.org/10.1016/j.jff.2021.104850

Chong, H. X., Yusoff, N. A. A., Hor, Y. Y., Lew, L. C., Jaafar, M. H., Choi, S. B., Yusoff, M. S. B., Wahid, N., Abdullah, M. F. I. L., Zakaria, N., Ong, K. L., Park, Y. H., & Liong, M. T. (2019). Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. Journal of Dairy Science, 102(6), 4783–4797. https://doi.org/10.3168/jds.2018-16103

de Jong, S. E., Olin, A., & Pulendran, B. (2020). The Impact of the Microbiome on Immunity to Vaccination in Humans. Cell Host and Microbe, 28(2), 169–179. https://doi.org/10.1016/j.chom.2020.06.014

Delgado-Gonzalez, P., Gonzalez-Villarreal, C. A., Roacho-Perez, J. A., Quiroz-Reyes, A. G., Islas, J. F., Delgado-Gallegos, J. L., Arellanos-Soto, D., Galan-Huerta, K. A., & Garza-Treviño, E. N. (2021). Inflammatory effect on the gastrointestinal system associated with COVID-19. World Journal of Gastroenterology, 27(26), 4160–4171. https://doi.org/10.3748/wjg.v27.i26.4160

Dhar, D., & Mohanty, A. (2020). Gut microbiota and Covid-19- possible link and implications. Virus Research, 285, 198018. https://doi.org/10.1016/j.virusres.2020.198018

Gasmi, A., Mujawdiya, P. K., Pivina, L., Doşa, A., Semenova, Y., Benahmed, A. G., & Bjørklund, G. (2020). Relationship between Gut Microbiota, Gut Hyperpermeability and Obesity. Current Medicinal Chemistry, 28(4), 827–839. https://doi.org/10.2174/0929867327666200721160313

Gutiérrez-Castrellón, P., Gandara-Martí, T., Abreu Y Abreu, A. T., Nieto-Rufino, C. D., López-Orduña, E., Jiménez-Escobar, I., Jiménez-Gutiérrez, C., López-Velazquez, G., & Espadaler-Mazo, J. (2022). Probiotic improves symptomatic and viral clearance in Covid19 outpatients: a randomized, quadruple-blinded, placebo-controlled trial. Gut Microbes, 14(1). https://doi.org/10.1080/19490976.2021.2018899

Harrison, O. J., & Powrie, F. M. (2013). Regulatory T cells and immune tolerance in the intestine. Cold Spring Harbor Perspectives in Biology, 5(7), 1–17. https://doi.org/10.1101/cshperspect.a018341

He, L. H., Ren, L. F., Li, J. F., Wu, Y. N., Li, X., & Zhang, L. (2020). Intestinal Flora as a Potential Strategy to Fight SARS-CoV-2 Infection. Frontiers in Microbiology, 11(June). https://doi.org/10.3389/fmicb.2020.01388

Hunt, R. H., East, J. E., Lanas, A., Malfertheiner, P., Satsangi, J., Scarpignato, C., & Webb, G. J. (2021). COVID-19 and Gastrointestinal Disease: Implications for the Gastroenterologist. Digestive Diseases, 39(2), 119–139. https://doi.org/10.1159/000512152

Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2021). Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 0123456789. https://doi.org/10.1038/s41580-021-00418-x

Jaworska, K., Koper, M., & Ufnal, M. (2021). Gut microbiota and renin-angiotensin system: A complex interplay at local and systemic levels. American Journal of Physiology - Gastrointestinal and Liver Physiology, 321(4), G355–G366. https://doi.org/10.1152/ajpgi.00099.2021

Kim, H. S. (2021). Do an altered gut microbiota and an associated leaky gut affect COVID-19 severity? MBio, 12(1), 1–9. https://doi.org/10.1128/mBio.03022-20

Kim, M., & Kim, C. H. (2017). Regulation of humoral immunity by gut microbial products. 8(4), 392–399.

Kim, S., Goel, R., Kumar, A., Qi, Y., Lobaton, G., Hosaka, K., Mohammed, M., Handberg, E. M., Richards, E. M., Pepine, C. J., & Raizada, M. K. (2018). Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. 132(6), 701–718. https://doi.org/10.1042/CS20180087.Imbalance

Kopel, J., Perisetti, A., Gajendran, M., Boregowda, U., & Goyal, H. (2020). Clinical Insights into the Gastrointestinal Manifestations of COVID-19. Digestive Diseases and Sciences, 65(7), 1932–1939. https://doi.org/10.1007/s10620-020-06362-8

Kurian, S. J., Unnikrishnan, M. K., Miraj, S. S., Bagchi, D., Banerjee, M., Reddy, B. S., Rodrigues, G. S., Manu, M. K., Saravu, K., Mukhopadhyay, C., & Rao, M. (2021). Probiotics in Prevention and Treatment of COVID-19: Current Perspective and Future Prospects. Archives of Medical Research, 52(6), 582–594. https://doi.org/10.1016/j.arcmed.2021.03.002

Leal-Martínez, F., Abarca-Bernal, L., García-Pérez, A., González-Tolosa, D., Cruz-Cázares, G., Montell-García, M., & Ibarra, A. (2022). Effect of a Nutritional Support System to Increase Survival and Reduce Mortality in Patients with COVID-19 in Stage III and Comorbidities: A Blinded Randomized Controlled Clinical Trial. International Journal of Environmental Research and Public Health, 19(3). https://doi.org/10.3390/ijerph19031172

Lei, W., Shih, P., & Liu, S. (2017). Effect of Probiotics and Prebiotics on Immune Response to Influenza Vaccination in Adults : A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 9. https://doi.org/10.3390/nu9111175

Litvak, Y., Byndloss, M. X., & Bäumler, A. J. (2018). Colonocyte metabolism shapes the gut microbiota. In Science (Vol. 362, Issue 6418). https://doi.org/10.1126/science.aat9076

Lynn, D. J., Benson, S. C., Lynn, M. A., & Pulendran, B. (2021). Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nature Reviews Immunology, 0123456789. https://doi.org/10.1038/s41577-021-00554-7

Lynn, D. J., & Pulendran, B. (2017). The potential of the microbiota to influence vaccine responses. Journal of Leukocyte Biology, 103(2), 225–231. https://doi.org/10.1189/jlb.5MR0617-216R

Mirzaei, R., Attar, A., Papizadeh, S., Salimi, A., Seyed, J., & Hosseini, R. (2021). The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 ( COVID ‑ 19 ). Archives of Virology, 166(7), 1819–1840. https://doi.org/10.1007/s00705-021-05036-8

Mitsuyama, K., Tsuruta, K., Takedatsu, H., Yoshioka, S., Morita, M., Niwa, M., & Matsumoto, S. (2020). Clinical Features and Pathogenic Mechanisms of Gastrointestinal Injury in COVID-19. Journal of Clinical Medicine, 9(11), 3630. https://doi.org/10.3390/jcm9113630

Mrityunjaya, M., Pavithra, V., Neelam, R., Janhavi, P., Halami, P. M., & Ravindra, P. V. (2020). Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. In Frontiers in Immunology (Vol. 11). https://doi.org/10.3389/fimmu.2020.570122

Mullish, B. H., Marchesi, J. R., McDonald, J. A. K., Pass, D. A., Masetti, G., Michael, D. R., Plummer, S., Jack, A. A., Davies, T. S., Hughes, T. R., & Wang, D. (2021). Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults: should we be considering probiotics during viral pandemics? Gut Microbes, 13(1), 1–9. https://doi.org/10.1080/19490976.2021.1900997

Olaimat, A. N., Aolymat, I., Al-holy, M., Ayyash, M., Ghoush, M. A., Osaili, T., Apostolopoulos, V., Liu, S., & Shah, N. P. (2020). The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. Npj Science of Food. https://doi.org/10.1038/s41538-020-00078-9

Oliveira, L. C. G., Cruz, N. A. N., Ricelli, B., Tedesco-Silva Jr, H., Medina-Pestana, J. O., & Casarini, D. E. (2021). Interactions amongst inflammation, renin-angiotensin-aldosterone and kallikrein-kinin systems: suggestive approaches for COVID-19 therapy. Journal of Venomous Animals and Toxins Including Tropical Diseases, 27(December 2021), 1–12. https://doi.org/10.1590/1678-9199-jvatitd-2020-0181

Pang, J., Liu, M., Ling, W., & Jin, T. (2021). Friend or foe? ACE2 inhibitors and GLP-1R agonists in COVID-19 treatment. Obesity Medicine, 22(January), 100312. https://doi.org/10.1016/j.obmed.2020.100312

Pautasso, M. (2019). The Structure and Conduct of a Narrative Literature Review. A Guide to the Scientific Career, 299–310. https://doi.org/10.1002/9781118907283.ch31

Pegah, A., Abbasi-Oshaghi, E., Khodadadi, I., Mirzaei, F., & Tayebinia, H. (2021). Probiotic and resveratrol normalize GLP-1 levels and oxidative stress in the intestine of diabetic rats. Metabolism Open, 10, 100093. https://doi.org/10.1016/j.metop.2021.100093

Penninger, J. M., Grant, M. B., & Sung, J. J. Y. (2021). The Role of Angiotensin Converting Enzyme 2 in Modulating Gut Microbiota, Intestinal Inflammation, and Coronavirus Infection. Gastroenterology, 160(1), 39–46. https://doi.org/10.1053/j.gastro.2020.07.067

Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14(3), 141–153. https://doi.org/10.1038/nri3608

Praharaj, I., John, S. M., Bandyopadhyay, R., & Kang, G. (2015). Probiotics, antibiotics and the immune responses to vaccines. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1671). https://doi.org/10.1098/rstb.2014.0144

Ratajczak, W., Rył, A., Mizerski, A., Walczakiewicz, K., Sipak, O., & Laszczyńska, M. (2019). Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs). Acta Biochimica Polonica, 66(1), 1–12. https://doi.org/10.18388/abp.2018_2648

Robles-Vera, I., Toral, M., de la Visitación, N., Sánchez, M., Gómez-Guzmán, M., Muñoz, R., Algieri, F., Vezza, T., Jiménez, R., Gálvez, J., Romero, M., Redondo, J. M., & Duarte, J. (2020). Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. British Journal of Pharmacology, 177(9), 2006–2023. https://doi.org/10.1111/bph.14965

Rooks, M. G., & Garrett, W. S. (2016). Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16(6), 341–352. https://doi.org/10.1038/nri.2016.42

Roy, K., Agarwal, S., Banerjee, R., Paul, M. K., & Purbey, P. K. (2021). COVID-19 and gut immunomodulation. World Journal of Gastroenterology, 27(46), 7925–7942. https://doi.org/10.3748/wjg.v27.i46.7925

Ruder, B., Atreya, R., & Becker, C. (2019). Tumour necrosis factor alpha in intestinal homeostasis and gut related diseases. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081887

Rutz, S., & Ouyang, W. (2016). Regulation of Interleukin-10 Expression (Issue Il, pp. 89–116). https://doi.org/10.1007/978-94-024-0921-5_5

Sazgarnejad, S., Yazdanpanah, N., & Rezaei, N. (2021). Anti-inflammatory effects of GLP-1 in patients with COVID-19. Expert Review of Anti-Infective Therapy, 00(00), 1–9. https://doi.org/10.1080/14787210.2021.1964955

Scaldaferri, F., Ianiro, G., Privitera, G., Lopetuso, L. R., Vetrone, L. M., Petito, V., Pugliese, D., Neri, M., Cammarota, G., Ringel, Y., Costamagna, G., Gasbarrini, A., Boskoski, I., & Armuzzi, A. (2020). The thrilling journey of sars-cov-2 into the intestine: From pathogenesis to future clinical implications. Inflammatory Bowel Diseases, 26(9), 1306–1314. https://doi.org/10.1093/ibd/izaa181

Shetty, P., K, N. K., Patil, P., Bhandary, S. K., Haridas, V., N, S. K., & E, S. (2021). Is butyrate a natural alternative to dexamethasone in the management of CoVID-19? F1000Research, 10, 1–18. https://doi.org/10.12688/f1000research.51786.1https://doi.org/10.12688/f1000research.51786.1

Shokri-Afra, H., Alikhani, A., Moradipoodeh, B., Noorbakhsh, F., Fakheri, H., & Moradi-Sardareh, H. (2021). Elevated fecal and serum calprotectin in COVID-19 are not consistent with gastrointestinal symptoms. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-01231-4

Sonkar, C., Kashyap, D., Varshney, N., Baral, B., & Jha, H. C. (2020). Impact of Gastrointestinal Symptoms in COVID-19: a Mollecular Approach. SN Comprehensive Clinical Medicine, 1–12.

Sundararaman, A., Ray, M., Ravindra, P. V, & Halami, P. M. (2020). Role of probiotics to combat viral infections with emphasis on COVID-19. Applied Microbiology and Biotechnology, 104(19), 8089–8104. https://doi.org/10.1007/s00253-020-10832-4

Tao, W., Zhang, G., Wang, X., Guo, M., Zeng, W., Xu, Z., Cao, D., Pan, A., Wang, Y., Zhang, K., Ma, X., Chen, Z., Jin, T., Liu, L., Weng, J., & Zhu, S. (2020). Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18. Medicine in Microecology, 5(January). https://doi.org/10.1016/j.medmic.2020.100023

Trougakos, I. P., Stamatelopoulos, K., Terpos, E., Tsitsilonis, O. E., Aivalioti, E., Paraskevis, D., Kastritis, E., Pavlakis, G. N., & Dimopoulos, M. A. (2021). Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Journal of Biomedical Science, 28(1), 9. https://doi.org/10.1186/s12929-020-00703-5

Udeh, R., Advani, S., Romualdo, L. G. de G., & Dolja-Gore, X. (2021). Calprotectin, an emerging biomarker of interest in covid-19: A systematic review and meta-analysis. Journal of Clinical Medicine, 10(4), 1–14. https://doi.org/10.3390/jcm10040775

Vecchié, A., Bonaventura, A., Toldo, S., Dagna, L., Dinarello, C. A., & Abbate, A. (2021). IL‐18 and infections: Is there a role for targeted therapies? Journal of Cellular Physiology, 236(3), 1638–1657. https://doi.org/10.1002/jcp.30008

Vignesh, R., Swathirajan, C. R., Tun, Z. H., Rameshkumar, M. R., Solomon, S. S., & Balakrishnan, P. (2021). Could Perturbation of Gut Microbiota Possibly Exacerbate the Severity of COVID-19 via Cytokine Storm? Frontiers in Immunology, 11(January), 1–7. https://doi.org/10.3389/fimmu.2020.607734

Villapol, S. (2020). Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Translational Research, 226(May), 57–69. https://doi.org/10.1016/j.trsl.2020.08.004

Villena, J., Li, C., Vizoso-Pinto, M. G., Sacur, J., Ren, L., & Kitazawa, H. (2021). Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms, 9(4), 683. https://doi.org/10.3390/microorganisms9040683

Vitetta, L., Saltzman, E. T., Thomsen, M., Nikov, T., & Hall, S. (2017). Adjuvant probiotics and the intestinal microbiome: Enhancing vaccines and immunotherapy outcomes. Vaccines, 5(4), 1–17. https://doi.org/10.3390/vaccines5040050

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 94(7), 2019–2020. https://doi.org/10.1128/jvi.00127-20

Worlds Health Organization. (2021). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/

Xiao, L., Sakagami, H., & Miwa, N. (2020). ACE2: The key Molecule for Understanding the Pathophysiology of Severe and Critical Conditions of COVID-19: Demon or Angel? Viruses, 12(491), 2002–2003. https://doi.org/10.3390/v12050491

Xu, J., Ren, Z., Cao, K., Li, X., Yang, J., Luo, X., Zhu, L., Wang, X., Ding, L., Liang, J., Jin, D., Yuan, T., Li, L., & Xu, J. (2021). Boosting Vaccine-Elicited Respiratory Mucosal and Systemic COVID-19 Immunity in Mice With the Oral Lactobacillus plantarum. Frontiers in Nutrition, 8(December). https://doi.org/10.3389/fnut.2021.789242

Yeoh, Y. K., Zuo, T., Lui, G. C. Y., Zhang, F., Liu, Q., Li, A. Y. L., Chung, A. C. K., Cheung, C. P., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chow, K. M., Ng, S. S. S., Li, T. C. M., Ng, R. W. Y., Yip, T. C. F., … Ng, S. C. (2021). Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 70(4), 698–706. https://doi.org/10.1136/gutjnl-2020-323020

Yu, Z., Yang, Z., Wang, Y., Zhou, F., Li, S., Li, C., Li, L., Zhang, W., & Li, X. (2021). Recent advance of ACE2 and microbiota dysfunction in COVID-19 pathogenesis. Heliyon, 7(7), e07548. https://doi.org/10.1016/j.heliyon.2021.e07548

Zuo, T., Liu, Q., Zhang, F., & Lui, G. C.-Y. (2021). Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut, 70, 279–284.

Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., Wan, Y., Chung, A. C. K., Cheung, C. P., Chen, N., Lai, C. K. C., Chen, Z., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chan, F. K. L., … Ng, S. C. (2020a). Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048

Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., Wan, Y., Chung, A. C. K., Cheung, C. P., Chen, N., Lai, C. K. C., Chen, Z., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chan, F. K. L., … Ng, S. C. (2020b). Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048

Downloads

Published

02/06/2022

How to Cite

SOUZA, L. B. de; GUZZONI, V.; CUNHA, T. S. . Role of gut microbiota in SARS-CoV-2 infection and the beneficial effects of probiotics on the management of the disease. Research, Society and Development, [S. l.], v. 11, n. 7, p. e48811730040, 2022. DOI: 10.33448/rsd-v11i7.30040. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30040. Acesso em: 6 jul. 2022.

Issue

Section

Review Article