Antifungal and antioxidant activities and chemical constituents from Pluchea sagittalis

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.30059

Keywords:

Pluchea sagittalis; Caffeoylquinic acids; Flavonoids; Fatty acids; Candida spp.; LC-MS.

Abstract

Pluchea sagittalis (Asteraceae) is widely distributed in South America and used as a medicinal plant to treat various diseases. The objectives of the work were to evaluate the antioxidant and antifungal activities of the ethanol extract and fractions from the aerial parts of P. sagittalis, as well as to identify the chemical constituents of the most active sample by liquid chromatography coupled to mass spectrometry with electrospray ionization (LC-MS-ESI). The ethanolic extract obtained by maceration of aerial parts showed relevant activity in DPPH free radical scavenging (IC50 = 33.9 µg mL-1) and presented an anti-Candida effect with MIC values of 93.75 µg mL-1 for C. albicans and 187 µg mL-1 for C. glabrata and C. tropicalis. However, the results found for the chloroform fraction prepared from the extract were more significant. This fraction showed the highest antioxidant activity with an IC50 of 12.5 µg mL-1 and inhibited the growth of Candida spp. with MIC values ranging from 46.87 to 93.75 µg mL-1. The qualitative phytochemical screening of this fraction indicated the presence of phenolic compounds and flavonoids. Twenty-three metabolites were identified by LC-MS in the chloroform fraction including caffeoylquinic acids derivatives, flavones and fatty acids, which have recognized antioxidant and antimicrobial effects. The results of the activities, as well as the chemical constituents present in the chloroform fraction, reveal the potential of this fraction as a source of antioxidant and antifungal agents.

References

Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D., & Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chemistry, 166(1), 179-191. https://doi.org/10.1016/j.foodchem.2014.06.011.

Ağalar, H. G., Çiftçi, G. A., Göger, F., & Kırımer, N. (2017). Activity guided fractionation of Arum italicum miller tubers and the LC/MS-MS profiles. Records of Natural Products, 12, 64-75.

Ahemd, S. A., & Kamel, E. M. (2013). Phenolic constituents and biological activity of the genus Pluchea. Der Pharma Chemica, 5(5), 109-114.

Aldholmi, M., Marchand, P., Ourliac-Garnier, I., Le Pape, P., & Ganesan, A. (2019). A Decade of Antifungal Leads from Natural Products: 2010-2019. Pharmaceuticals, 12(4), 1-22. https://doi.org/10.3390/ph12040182.

Alerico, G. C., Beckenkamp, A., Vignoli-Silva, M., Buffon, A., & Von Poser, G. L. (2015). Proliferative effect of plants used for wound healing in Rio Grande do Sul state, Brazil. Journal of Ethnopharmacology, 176, 305-310. https://doi.org/10.1016/j.jep.2015.11.001.

Almeida, F., Rodrigues, M. L., & Coelho, C. (2015). The still underestimated problem of fungal diseases worldwide. Frontiers in microbiology, 10(214), 1-5. https://10.3389/fmicb.2019.00214.

Bremer, K. R. (1994). Asteraceae: Cladistics & classification. Portland: Timber Press.

Badiee, P., & Hashemizadeh, Z. (2014). Opportunistic invasive fungal infections: diagnosis & clinical management. The Indian Journal of Medical Research, 139(2), 195-204. https://pubmed.ncbi.nlm.nih.gov/24718393.

Beardsley, J., Halliday, C. L., Chen, S. C. A., & Sorrell, T. C. (2018). Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiology, 13(10), 1175-1191. https://10.2217/fmb-2018-0059.

Bieski, I. G. C., Leonti, M., Arnason, J. T., Ferrier, J., Rapinski, M., Violante, I. M. P., Balogun, S. O., Pereira, J. F. C. A., Figueiredo, R. D. C. F., Lopes, C. R. A. S., Da Silva, D. R., Pacini, A., Albuquerque, U. P., & Martins, D. T. O. (2015). Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. Journal of Ethnopharmacology, 173, 383-423. https://doi.org/10.1016/j.jep.2015.07.025.

Blainski, A., Lopes, G. C., & De Mello, J. C. (2013). Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 18(6), 6852-6865. https://10.3390/molecules18066852.

Burger, M. E., Baldisserotto, B., Teixeira, E. P., & Soares, J. (2000). Action of the extracts of Pluchea sagittalis on the absorptive characteristics of the gastrointestinal tract. Brazilian Archives of Biology and Technology, 43(1). http://dx.doi.org/10.1590/S1516-89132000000100012.

Campos-Navarro, R., & Scarpa, G. F. (2013). The cultural-bound disease “empacho” in Argentina. A comprehensive botanico-historical and ethnopharmacological review. Journal of Ethnopharmacology, 148(2), 349-360. https://doi.org/10.1016/j.jep.2013.05.002.

Campoy, S., & Adrio, J. L. (2017). Antifungals. Biochemical Pharmacology, 133, 86-96. https://doi.org/10.1016/j.bcp.2016.11.019.

Carvalho, A. C., Lira, J. C. S., Pereira, T. M., Silva, S. C., Simote-Silva, S. Y., Oliveira, F. K. D., King-Diaz, B., Lotina-Hennsen, B., & Veiga, T. A. M. (2019). Natural products from Pluchea sagittalis act as inhibitors of photosynthesis in vitro. Natural Product Research, 33(4), 557-562. https://10.1080/14786419.2017.1396587.

Chen, J., Yang, J., Ma, L., Li, J., Shahzad., N., Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10, 2611 (2020). https://doi.org/10.1038/s41598-020-59451-z.

CLSI - Clinical and Laboratory Standards Institute . (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard, 3rd edition. Wayne, PA, USA, CLSI document m27-A3.

De Souza, G. C., Haas, A. P. S., Von Poser, G. L., Schapoval, E. E. S., & Elisabetsky, E. (2004). Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. Journal of Ethnopharmacology, 90(1), 135-143. https://doi.org/10.1016/j.jep.2003.09.039.

Córdova, W. H. P., Mesa, L. G., Hill, A. L. P., Lima, C. N., Lamas, G. D., Suáreza, M. O., & Domíngueza, R. S. (2006). Antimicrobial activity of crude extracts and flavonoids from leaves of Pluchea carolinensis (Jacq.) G. Don. Pharmacologyonline, 3, 757-761.

De Albuquerque, U. P., De Medeiros, P. M., De Almeida, A. L. S., Monteiro, J. M., De Freitas Lins Neto, E. M., De Melo, J. G., & Dos Santos, J. P. (2007). Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. Journal of Ethnopharmacology, 114(3), 325-354. https://doi.org/10.1016/j.jep.2007.08.017.

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities. A Critical Review Medicines, 3(4), 1-16. https://doi.org/10.3390/medicines3040025.

Džamić, A. M., Soković, M. D., Novaković, M., Jadranin, M., Ristić, M. S., Tešević, V., & Marin, P. D. (2013). Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Industrial Crops and Products, 51, 401-407. https://doi.org/10.1016/j.indcrop.2013.09.038.

Falcão, S. I., Vale. N., Gomes, P., Domingues, M. R., Freire, C., Cardoso, S. M., & Vilas-Boas, M. (2013). Phenolic profiling of Portuguese propolis by LC-MS spectrometry: uncommon propolis rich in flavonoid glycosides. Phytochemical Analysis, 24(4), 309-318. https://doi.org/10.1002/pca.2412.

Faustino, M. V., Pinto, D. C. G. A., Gonçalves, M. J., Salgueiro, L., Silveira, P., & Silva, A. M. S. (2018). Calendula L. species polyphenolic profile and in vitro antifungal activity. Journal of Functional Foods, 45, 254-267. https://doi.org/10.1016/j.jff.2018.04.013.

Figueredo, S. M., Do Nascimento, F. P., Freitas, C. S., Baggio, C. H., Soldi, C., Pizzolatti, M. G., De Ibarrola, M. D. C. C., De Arrua, R. L. D., & Santos, A. R. S. (2011). Antinociceptive and gastroprotective actions of ethanolic extract from Pluchea sagittalis (Lam.) Cabrera. Journal of Ethnopharmacology, 135(3), 603-609. https://doi.org/10.1016/j.jep.2011.03.006.

Filipov, A. (1994). Medicinal plants of the Pilagá of Central Chaco. Journal of Ethnopharmacology, 44(3), 181-193. https://doi.org/10.1016/0378-8741(94)01185-0.

GAFFI - Global Action Found for Fungal Infections. (2020). Disponível em: <https://www.gaffi.org/>. Acesso em: maio de 2020.

Ganzon, J. G., Chen, L. G., & Wang, C. C. (2018). 4-O-Caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. Journal of Food and Drug Analysis, 26(3), 985-993. https://doi.org/10.1016/j.jfda.2017.11.011.

Giada, M. (2013). Food phenolic compounds: Main classes, sources and their antioxidant power. In: Morales-Gonzále, J. A. Oxidative Stress and Chronic Degenerative Diseases - A Role for Antioxidants, Rijeka: InTech, cap. 4, 87–112.

Gómez-Romero, M., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, 71,(16), 1848-1864. https://doi.org/10.1016/j.phytochem.2010.08.002.

Gorzalczany, S., Acevedo, C., Muschietti, L., Martino, V., & Ferraro, G. (1996). Search for antiinflammatory activity in Argentine Medicinal Plants. Phytomedicine, 3(2), 181-184. https://doi.org/10.1016/S0944-7113(96)80033-X.

Grandini, C. P. (2017). Obtenção de extratos voláteis e não voláteis de Pluchea sagittalis (Lam.) Cabrera (quitoco): 39571 Richer Costa Camargo et al., Potencial antimicrobiano de extratos etanólicos de plantas contra staphylococcus aureus multirresistentes isoladas de mastite bovina processos e análises. Dissertação (Mestrado em Engenharia e Tecnologia de Materiais). Pontifícia Universidade Católica do Rio Grande do Sul, Brasil.

Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clinical Microbiology and Infection, 20, 5-10. https://doi.org/10.1111/1469-0691.12539.

Han, J., Ye, M., Qiao, X., Xu, M., Wang, B. R., & Guo, D. A. (2008). Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 47(3), 516-525.

Iwashina1, T., Smirnov, S. V., Damdinsuren, O., & Kondo, K. (2012). Flavonoids from Reaumuria soongarica (Tamaricaceae) in Mongolia. Bulletin of the National Museum of Nature and Scienca, 38(4), 189–195.

Jeng, T. L., Lai, C. C., Liao, T. C., Lin, S. Y., & Sung, J. M. (2015). Effects of drying on caffeoylquinic acid derivative content and antioxidant capacity of sweet potato leaves. Journal of Food and Drug Analysis, 23(4), 701-708. https://doi.org/10.1016/j.jfda.2014.07.002.

Kaurinovic, B., & Vastag, G. (2019). Flavonoids and Phenolic Acids as Potential Natural Antioxidants. In: Shalaby, E., & Azzam, G. M. Antioxidants in Foods and Its Applications, IntechOpen, cap. 7, 178.

Kuete, V. Potential of cameroonian plants and derived products against microbial infections: A review. Planta Medica, 76(14), 1479-1491. https://10.1055/s-0030-1250027.

Kullberg, B. J., & Arendrup, M. C. (2015). Invasive Candidiasis. New England Journal of Medicine, 373(15), 1445-1456. https://10.1056/NEJMra1315399.

Liang, N., Dacko, A., Tan, A. K., Xiang, S., Curtis, J. M., & Gänzle, M. G. (2020). Structure-function relationships of antifungal monohydroxy unsaturated fatty acids (HUFA) of plant and bacterial origin. Food Research International, 134, 109237. https://doi.org/10.1016/j.foodres.2020.109237.

LIFE - Leading International Fungal Education. (2017). The burden of fungal disease: New evidence to show the scale of the problem across the globe. https://gaffi.org/the-burden-of-fungal-disease-new-evidence-to-show-the-scale-of-the-problem-across-the-globe/.

Lin, L. Z., & Harnly, J. M. (2007). A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. Journal of Agricultural and Food Chemistry, 55(4), 1084-1096, 2007. https://doi.org/10.1021/jf062431s.

Mamoci, E., Cavoski, I., Simeone, V., Mondelli, D., Al-Bitar, L., & Caboni, P. (2011). Chemical composition and in vitro activity of plant extracts from Ferula communis and Dittrichia viscosa against postharvest fungi. Molecules. 16(3), 2609-2625. https://doi.org/10.3390/molecules16032609.

Mandeel, Q., & Taha, A. Assessment of in vitro. Antifungal activities of various extracts of indigenous bahraini medicinal plants. Pharmaceutical Biology, 43(4), 340-348. https://10.1080/13880200590951766.

Manh, H. T., Na, M., Thuong, P. T., Su, N. D., Sok, D., Song, K. S., Seong, Y. H., & Bae, K. (2006). Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. Journal of Ethnopharmacology, 108, 188-92. https://10.1016/j.jep.2006.04.029.

Martino, V. S., Debenedettii, S. L., & Coussio, J. D. (1979). Caffeoylquinic Acids from Pterocaulon virgatum and Pluchea sagittalis. Phythochemistry, 18, 2052.

Martino, V. S., Ferraro, G. E., & Coussro, J. D. (1976). A new flavonoid from Pluchea sagittalis. Phythochemistry, 15, 1086-1087.

Martino, V. S., Ferraro, G. E., Debenedetti, S. J., & Coussio, J. D. (1989). Determinación espectrofotométrica del contenido de ácidos cafeoilquínicos en especies de Compuestas argentinas usadas en medicina popular. Acta Farmacéutica Bonaerense, 8(1), 3-9.

Martino, V. S., Ferraro, G. E., Debenedetti, S. L., & Coussio, J. D. (1984). Compuestos Polifenólicos aislados de Pluchea sagittalis (Compuestas). Acta Farmacéutica Bonaerense, 3(2), 141-146.

Martins, N., Barros, L., Henriques, M., Silva, S., & Ferreira, I. C. F. R. (2015). Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products, 74, 648-670. https://doi.org/10.1016/j.indcrop.2015.05.067.

Masike, K., Mhlongo, M. I., Mudau, S. P., Nobela, O., Ncube, E. N., Tugizimana, F., George, M. J., & Madala, N. E. (2017). Highlighting mass spectrometric fragmentation diferences and similarities between hydroxycinnamoyl-quinic acids and hydroxycinnamoyl-isocitric acids. Chemistry Central Journal, 11(29), 1-7. https://doi.org/10.1186/s13065-017-0262-8.

Matsui, Y., Nakamura, S., Kondou, N., Takasu, Y., Ochiai, R., & Masukawa, Y. Liquid chromatography-electrospray ionization-tandem mass spectrometry for simultaneous analysis of chlorogenic acids and their metabolites in human plasma. Journal of Chromatography B, 858(1-2), 96-105. https://doi.org/10.1016/j.jchromb.2007.08.013.

Metlin Database. [Online] Available: https://metlin.scripps.edu/landing_page.php?pgcontent=mainPag. (Oct 18, 2020).

Monks, N. R., Ferraz, A., Bordignon, S., Machado, K. R., Lima, M. F. S., Rocha, A. B., & Schwartsmann, G. (2002). In vitro Cytotoxicity of Extracts from Brazilian Asteraceae. Pharmaceutical Biology, 40(7), 494-500. https://10.1076/phbi.40.7.494.14681.

Moreira, M. A. B., Souza, A. D., Jardim, F. B. B., Cunha, L. C. S., Martins, M. M., Goulart, L. R., Morais, S. A. L., Aquino, F. J. T., Cruz, W. O., Costa, L. G., & Borges Neto, W. (2021). Chemical profile and chemometric analysis of genetically modified soybeans produced in the Triângulo Mineiro Region (MG), Brazil. Journal of Agricultural Studies, 9(2), 73-95. http://dx.doi.org/10.5296/jas.v9i2.18139.

Naveed, S., Ibrar, M., & Khan, I. (2016). In vitro evaluation of medicinal, antioxidant activities and phytochemical screening of Iphiona grantioides and Pluchea arguta subsp. Glabra Qaiser. Pakistan Journal of Botany, 48(6), 2505-2511.

Negri, M., Salci, T. P., Shinobu-Mesquita, C. S., Capoci, I. R. G., Svidzinski, T. I. E., & Kioshima, E. S. (2014). Early State Research on Antifungal Natural Products. Molecules, 19(3), 2925-2956. https://doi.org/10.3390/molecules19032925.

Nessma, A. E. Z., & Elsayed, E. H. (2017). Efficacy of Pluchea dioscoridis leaf extract against pathogenic Candida albicans. The Journal of Infection in Developing Countries, 11(4), 334-342. https://10.3855/jidc.8447.

Newman, D. J., & Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629-61. https://10.1021/acs.jnatprod.5b01055.

Newman, D. J., & Cragg, G. M. (2020). Natural Products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. https://10.1021/acs.jnatprod.9b01285.

Nguyen, D. T., Göpfert, J. C., Ikezawa, N., Macnevin, G., Kathiresan, M., Conrad, J., Spring, O., & Ro, D. K. (2010). Biochemical conservation and evolution of germacrene A oxidase in Asteraceae. Journal of Biological Chemistry, 285(22), 16588-16598. doi: 10.1074/jbc.M110.111757.

Nicola, A. M., Albuquerque, P., Paes, H. C., Fernandes, L., Costa, F. F., Kioshima, E. S., Abadio, A. K. R., Bocca, A. L., & Felipe, M. S. (2019). Antifungal drugs: New insights in research & development. Pharmacology & Therapeutics, 195, 21-38. https://doi.org/10.1016/j.pharmthera.2018.10.008.

Oh, W. Y., Ambigaipalan, P., & Shahidi, F. (2019). Preparation of quercetin esters and their antioxidant activity. Journal of Agricultural Food Chemistry, 67(38), 10653-10659. https://doi.org/10.1021/acs.jafc.9b04154.

Olanda, G. B., Bevilaqua, G. A. P., Schuch, L. F. D., Prestes, L. S., & Job, R. B. (2019). Estabilidade da atividade antibacteriana do extrato de Pluchea sagittalis (LAM.) Cabrera frente a microrganismos causadores da mastite bovina. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, 22(1), 21-25. https://doi.org/10.25110/arqvet.v22i1.2019.6483.

Oliveira, D. M., Silva, T. F. R., Martins, M. M., Morais, S.A.L., Chang, R., Aquino, F. J. T., Silva, C. V., Teixeira, T. L., Martins, C. H. G., Moraes, T. S., Cunha, L. C. S., Pivatto, M., & Oliveira, A. (2018).

Antifungal and cytotoxicity activities of Banisteriopsis gyrophylla leaves. Journal of Pharmacy and Pharmacology, 70(11), 1541-1552. https://doi.org/10.1111/jphp.12996.

Oliveira, S. C. D., & Rodrigues, A. G. (2020). Candida albicans antifungal resistance and tolerance in bloodstream infections: The triad yeast-host-antifungal. Microorganisms, 8(2), 1-19. https://doi.org/10.3390/microorganisms8020154.

Ouriques, F. G. D. O. M., Caruso, P. B., Silva, G. V. D., Dias, H., Marques, J. R., Nunes, F. B., Ferreira, P. M. A., & Oliveira, J. R. D. (2018). Antifibrotic effect of Pluchea sagittalis (Lam.) cabrera aqueous extract in grx cell lineage. International Journal of Phytomedicine, 10(1), 30-38. https://10.5138/09750185.1832.

Ozgen, S., Kilinc, O. K., & Selamoglu, Z. (2016). Antioxidant Activity of quercetin: A mechanistic review. Turkish Journal of Agriculture - Food Science and Technology, 4(12), 1134-1138. https://doi.org/10.24925/turjaf.v4i12.1134-1138.1069.

Parejo, I., Viladomat, F., Bastida, J., Rosas-Romero, A., Saavedra, G., Murcia, M. A., Jiménez, A. M., & Codina, C. (2003). Investigation of Bolivian plant extracts for their radical scavenging activity and antioxidant activity. Life Sciences, 73(13), 1667-1681. https://doi.org/10.1016/S0024-3205(03)00488-0.

Pérez-García, F., Marín, E., Adzet, T., & Cañigueral, S. (2001). Activity of plant extracts on the respiratory burst and the stress protein synthesis. Phytomedicine, 8(1), 31-38. https://doi.org/10.1078/0944-7113-00018.

Pérez-García, F., Marín, E., Cañigueral, S., & Adzet, T. (1996). Anti-inflammatory action of Pluchea sagittalis: Involvement of an antioxidant mechanism. Life Sciences, 59(24), 2033-2040. https://doi.org/10.1016/S0024-3205(96)00556-5.

Pérez-García, F., Marín, E., Parella, T., Adzet, T., & Cañigueral, S. (2005). Activity of taraxasteryl acetate on inflammation and heat shock protein synthesis. Phytomedicine, 12(4), 278-284. https://doi.org/10.1016/j.phymed.2004.03.008.

Pérez, F., Marín, E., & Adzet, T. (1995). The antiinflammatory effect of several composite from South America. Extracts in rats. Phytotherapy Research, 9, 145-146. https://10.1002/ptr.2650090214.

Pereira, O. R., Peres, A. M., Silva, A. M. S., Domingues, M. R. M., & Cardoso, S. M. (2013). Simultaneous characterization and quantification of phenolic compounds in Thymusx citriodorususing a validated HPLC–UV and ESI–MS combined method. Food Research International, 54, 1773-1780. https://doi.org/10.1016/j.foodres.2013.09.016.

Reynertson, K. A., Basile, M. J., & Kennelly, E. J. (2005). Antioxidant potential of seven Myrtaceous fruits. Ethnobotany Research and Applications. 3, 25–36. https://ethnobotanyjournal.org/index.php/era/article/view/49.

Rhimi, W., Ben Salem, I., Iatta, R., Chaabane, H., Saidi, M., Boulila, A., & Cafarchia, C. (2018). Dittrichia viscosa L. leaves lipid extract: An unexploited source of essential fatty acids and tocopherols with antifungal and anti-inflammatory properties. Industrial Crops and Products, 113, 196-201. https://doi.org/10.1016/j.indcrop.2018.01.032.

Rodrigues, M. L., & Nosanchuk, J. D. (2020). Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLOS Neglected Tropical Diseases, 14(2), 1-9. https://10.1371/journal.pntd.0007964.

Rodrigues, S. A. Efeito ansiolítico do extrato etanólico de Pluchea sagittalis (Lam.) Cabrera, Asteraceae, em modelos comportamentais. 2011. 105 f. Tese - Pós-Graduação em Biotecnologia, Univevrsidade Federal de Sergipe São Cristovão, Sergipe.

Ruan, J., Li, Z., Yan, J., Huang, P., Yu, H., Han, L., Zhang, Y., & Wang, T. (2018). Bioactive Constituents from the Aerial Parts of Pluchea indica Less. Molecules, 23(9), 2104. https://doi.org/10.3390/molecules23092104.

Ruan, J., Yan, J., Zheng, D., Sun, F., Wang, J., Han, L., Zhang, Y., Wang, T. (2019). Comprehensive chemical profiling in the ethanol extract of Pluchea indica aerial parts by liquid chromatography/mass spectrometry analysis of its silica gel column chromatography fractions. Molecules, 24(15), 2784. https://10.3390/molecules24152784.

Salih, E. Y. A., Fyhrquist, P., Abdalla, A. M. A., Abdelgadir, A. Y., Kanninen, M., Sipi, M., Luukkanen, O., Fahmi, M. K. M., Elamin, M. H., & Ali, H. A. (2017). LC-MS/MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii (Fresen). Antibiotics, 6(4), 37. https://doi.org/10.3390/antibiotics6040037.

Sanguinetti, M., Posteraro, B., Beigelman-Aubry, C., Lamoth, F., Dunet, V., Slavin, M., & Richardson, M. D. (2019). Diagnosis and treatment of invasive fungal infections: looking ahead. Journal of Antimicrobial Chemotherapy, 74(2), 27-37. https://10.1093/jac/dkz041.

Schmidt, C., Fronza, M., Goettert, M., Geller, F., Luik, S., Flores, E. M. M., Bittencourt, C. F., Zanetti, G. D., Heinzmann, B. M., Laufer, S., & Merfort, I. (2009). Biological studies on Brazilian plants used in wound healing. Journal of Ethnopharmacology, 122(3), 523-532. https://doi.org/10.1016/j.jep.2009.01.022.

Scholz, E., Heinrich, M., & Hunkler, D. (1994). Caffeoylquinic acids and some biological activities of Pluchea symphytifolia. Planta Medica, 60(4), 360-364. https://10.1055/s-2006-959501.

Sepahpour, S., Selamat, J., Manap, M. Y. A., Khatib, A., & Razis, A. F. A. (2018). Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules, 23(2), 402. https://10.3390/molecules23020402.

Simões, C. M. O., Falkenberg, M., Mentz, L. A., Schenkel, E. P., Amoros, M., & Girre, L. (1999). Antiviral activity of South Brazilian medicinal plant extracts. Phytomedicine, 6(3), 205-214. https://doi.org/10.1016/S0944-7113(99)80010-5.

Sosa, A., Costa, M., Salvatore, A., Bardon, A., Borkosky, S., & Vera, N. (2017). Insecticidal effects of eudesmanes from Pluchea sagittalis (Asteraceae) on Spodoptera frugiperda and Ceratitis capitata. International Journal of Environment, Agriculture and Biotechnology, 2(1), 361-369. http://dx.doi.org/10.22161/ijeab/2.1.45.

Sousa, C. M. M., Silva, H. R., Vieira Jr, G. M., Ayres, M. C. C., Da Costa C. L. S., Araújo, D. S., Cavalcante, L. C. D., Barros, E. D. S., Araújo, P. B. M., Brandão, M. S., & Chaves, M. H. (2007). Fenóis totais e atividade antioxidante de cinco plantas medicinais. Química Nova, 30(2), 351-355. https://doi.org/10.1590/S0100-40422007000200021.

Stüker, C. Z. (2012). Prospecção fitoquímica s atividade biológica de plantas medicinais da família Asteraceae no Bioma Pampa. 2012. 224 f. Tese - Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Santa Maria, 2012.

Vandeputte, P., Ferrari, S., & Coste, A. T. (2012). Antifungal resistance and new strategies to control fungal infections. International Journal of Microbiology, 2012, 1-26. https://10.1155/2012/713687.

Vera, N., Misico, R., Sierra, M. G., Asakawa, Y., & Bardón, A. (2008). Eudesmanes from Pluchea sagittalis. Their antifeedant activity on Spodoptera frugiperda. Phytochemistry, 69(8), 1689-1694. https://doi.org/10.1016/j.phytochem.2008.02.020.

Verma, A. K., & Pratap, R. (2010). The biological potential of flavones. Natural Product Report, 27(11), 1571-1593.

Visintini Jaime, M. F., Redko, F., Muschietti, L. V., Campos, R. H., Martino, V. S., & Cavallaro, L. V. (2013). In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virology journal, 10, 245-245. https://10.1186/1743-422X-10-245.

Zida, A., Bamba, S., Yacouba, A., Ouedraogo-Traore, R., & Guiguemdé, R. T. (2016). Anti-Candida albicans natural products, sources of new antifungal drugs: A review. Journal de Mycologie Médicale, 27(1), 1-19. https://doi.org/10.1016/j.mycmed.2016.10.002.

Wang, X., Ding, G., Liu, B., & Wang, Q. (2020). Flavonoids and antioxidant activity of rare and endangered fern: Isoetes sinensis. Plos One, 15(5), e0232185. https://doi.org/10.1371/journal.pone.0232185.

Wang, Y., Yang, L., He, Y. Q., Wang, C. H., Welbeck, E. W., Bligh, S. W. A., & Wang, Z. T. (2008). Characterization of fifty-one flavonoids in a Chinese herbal prescription Longdan Xiegan Decoction by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and photodiode array detection. Rapid Communication Mass Spectrometric, 22, 1767–1778. https://doi.org/10.1002/rcm.3536.

Waksmundzka-Hajnos, M., Sherma, J., & Kowalska, T. (2008). Thin layer chromatography in phytochemistry. Boca Raton/London/New York: CRC Press.

Woisky, R.G., & Salatino, A. (1998). Analysis of propolis: some parameters andprocedures for chemical quality control. Journal of Apicultural Research, 37(2), 99–105. https://doi.org/10.1080/00218839.1998.11100961.

Downloads

Published

29/05/2022

How to Cite

FREITAS, L. da S.; ANDRADE, W. P. de; BARRETO, D. N.; SILVA, T. da C.; SANTIAGO, M. B. .; MARTINS, M. M. .; CARVALHO, M.; PEREIRA, D. P. .; THULER, R. T. .; MARTINS, C. H. G.; COELHO, V. P. de M.; CUNHA, L. C. S. Antifungal and antioxidant activities and chemical constituents from Pluchea sagittalis. Research, Society and Development, [S. l.], v. 11, n. 7, p. e40111730059, 2022. DOI: 10.33448/rsd-v11i7.30059. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30059. Acesso em: 16 aug. 2022.

Issue

Section

Agrarian and Biological Sciences