Micronutrients deficiency on the nutritional status of physalis
DOI:
https://doi.org/10.33448/rsd-v11i8.30415Keywords:
Physalis; Omission of micronutrientes; Mineral nutrition; Fruit.Abstract
The plant Physalis peruviana L. presents a high added value, being able to be used from its root to the fruit itself. The roots and leaves are rich in medicinal properties and can be used in the pharmacological market. The supply of nutrients is one of the most important factors to be developed to increase the productivity of fisalis guaranteeing the quality desired by the market of consumption of its fruits. Knowledge of micronutrient requirements and nutritional efficiencies is relevant to the development of fisalis fertilization recommendation. The objective of this work was to evaluate the effect of micronutrients deficiencies on development and on nutritional status of fisalis plants. The experimental design was in randomized blocks, with three replicates. The treatments were composed of a complete nutrient solution containing macro and micronutrients and solutions with omission of one micronutrient with one plant per pot. The evaluations of the physiological characteristics were carried out at 35 days after the application of the treatments, and development and nutritional efficiency evaluations were performed at 150 days. Physiological characteristics of fisalis plants, such as photosynthetic rate, stomatal conductance, carbon consumption, internal carbon and water use efficiency, were limited with micronutrient subtraction. The micronutrients that most affected the cultivation of fisalis were B, Fe and Zn. The order of restriction of the development caused by the omission of micronutrients was: Fe> B> Zn> Mn> Cu.
References
Ahmad, W. et al. (2009). Role of boron in plant growth: a review. Journal of Agricultural Reseach, Lahore, 47(3). 3, 329-338.
Aspiazú, I., Sediyama, T., Ribeiro Jr., J.I., Silva, A.A., Concenco, G., Galon, L., Ferreira, E.A., Silva, A.F., Borges, E.T., & Araujo, W.F. (2010). Eficiéncia fotosintética y de uso del agua por malezas (2010). Planta Daninha, Viçosa, 28 (1), 87-92.
Aular, J., & Natale, W. (2013). Nutrição mineral e qualidade do fruto de algumas frutíferas tropicais: goiabeira, mangueira, bananeira e mamoeiro. Revista Brasileira de Fruticultura, Jaboticabal, 35(4), 1214-1231.
Barros, J., Serk, H., Granlund, I., & Pesquet, E. (2015). The cell biology of lignification in higher plants. Annals of botany, Oxford, 115(7), 1053-1074.
Bessa, L. A., Silva, F.G, Moreira, M.A., Teodoro, J.P.R., & Soares, F.A.L. (2013). Characterization of nutrient deficiency in Hancornia speciosa Gomes seedlings by omitting micronutrients from the nutrient solution. Revista Brasileira de Fruticultura, Jaboticabal, 35 (2), p.72-83.
Bogiani, J., Estevens, A., & Rosolem. C. (2013). Carbohydrate production and transport in cotton cultivars grown under boron deficiency. Scientia Agricola, Piracicaba, 70(6), 442-448.
Briat, J. F., Curie, C., & Gaymard, F. (2007). Iron utilization and metabolism in plants. Curr. Opin. Plant Biology, Palo Alto, 10(3), 276–282.
Briat, J. F., Dubos, C., & Gaymard, F. (2015). Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, Cambridge, 20(1), 33–40.
Broadley, M. (2012). Function of nutrients: micronutrients. In: Marschner, P., ed. Marschner’s Mineral Nutrition of Higher Plants, 3.ed. London: Academic Press Elsevier, 2012. 651 p.
Broadley, M. (2007). Zinc in plants. New Phytologist, Lancaster, v. 173, 677-702.
Chen, L., Ding, C., Wang, S., & Ding, Y. (2014). Physiological and molecular responses under fe deficiency in two rice (Oryza sativa) genotypes differing in iron accumulation ability in seeds. Journal of Plant Growth Regulation, New York, 33(4), 769-777.
Chepote, R. E. (2013). Recomendações de corretivos e fertilizantes na cultura do cacaueiro no sul da Bahia. Ilhéus: CEPLAC/ CEPEC, 2013. 44 (Boletim Técnico, 203).
Cherif , J., Mediouni, C., Ammar, W.B., & Jemal, F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). Journal of Environmental Sciences, Umuahia, 23(3), p.837-844.
Clark, R.B. (1975). Characterization of phosphatase of intact maize roots. Journal Agriculture Food Chemistry, Washington, 23(4), 458-460.
Concenço, G., Ferreira, E.A., Silva, A.A., Ferreira, F.A., Galon, L., Reis, M.R., d'Antonino, L., Vargas, L., & Silva, L.V.B.D. (2008). Fotossíntese de biótipos de azevém sob condição de competição. Planta Daninha, Viçosa, 26(3), 595-600.
Cunha, A. C. M. C. M. Paiva, H.N., Xavier, A., & Otoni, W.C, (2009). Papel da nutrição mineral na formação de raízes adventícias em plantas lenhosas. Pesquisa Florestal Brasileira, Colombo, 58 (1), 35-47.
Dong, T., Xia, R., Xiaom Z., Wang, P., & Song, W. (2009). Effect of pre-harvest application of calcium and boron on dietary fibre, hydrolases and ultrastructure in ‘Cara Cara’navel orange (Citrus sinensis L. Osbeck) fruit. Scientia Horticulturae, Kentucky, 121(3), 272-277.
Faria, A.T., Silva, A.F., Ferreira, E.A., Rocha, P.R.R., Silva, D.V., Silva, A.A., & Tironi, S.P. (2014). Alterações nas características fisiológicas da cana-de-açúcar causadas por trinexapac-ethyl. Revista Brasileira Ciências Agrárias. Recife, 9(2), 200-204.
Ferreira, E. A., Aspiazú, I. A., Galon, L. L., Concenço, G. C., Silva, A. F., Reis, L. A. C., & Carvalho, F. (2011). Características fisiológicas da soja em relação a espécies de plantas daninhas, Revista Trópica Ciências Agrárias e Biológicas. Chapadinha, 5(1), p.42-52.
Fischer, G., & Almanza, P.J. (2014). Importancia y cultivo de la uchuva. Revista Brasileira de Fruticultura, Jaboticabal, 36(1), 001-015.
Floss, E. L. (2011). Fisiologia das plantas cultivadas: o estudo que está por trás do que se vê. 5ed. Passo Fundo: Universidade de Passo Fundo, 734 p.
Franco, A.C., Rossatto. D.R., Silva, L.C.R., & Ferreira. C.S. (2014). Cerrado vegetation and global change: the role of functional types, resource availability and disturbance in regulating plant community responses to rising CO2 levels and climate warming. Theoretical and Experimental Plant Physiology, Campos dos Goytacazes, 26(1), 19-38.
Führs, H. (2012). Functional associations between the metabolome and manganese tolerance in Vigna unguilata. Journal of Experimental Botany, Oxford, 63(1), 329-340.
Galon, L., Ferreira, F.A., Ferreira, E.A., Silva, A.A., & Concenço, G. (2010). Tolerância de novos genótipos de cana-de-açúcar a herbicidas. Planta Daninha, 28(2), 329-338.
Hafeez, B., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition - A Review. American Journal of Experimental Agriculture, West Bengal, 3(1), 374-391.
Hänsch, R., & Mendel, R. R. (2009). Physiological func- tions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, Oxford, 12(3), 259-266.
Henriques, A. R., Chalfun-Junior, A., & Aarts, M. (2012). Strategies to increase zinc deficiency tolerance and homeostasis in plants. Brazilian Journal of Plant Physiology, Londrina, 24(1), 3-8.
Hooda, S. (2010). Trace Elements in Soils. Ed. 1. United Kingdom: Wiley-Blackwell, 616 p.
Ianckievicz, A., Takahashi, H.W., Fregonezi, G.A.F., & Rodini, F.K. (2013). Produção e desenvolvimento da cultura de Physalis peruviana L. submetida a diferentes níveis de condutividade elétrica da solução nutritiva. Ciência Rural, Santa Maria, 43(3), 438-444.
Jeong, J., & Connolly, E. L. (2009). Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Science, Clare, v. 176, 709-714.
Kirkby, E.A., & Römheld, V. (2007). Micronutriente na fisiologia de plantas: funções, absorção e mobilidade. International Plant Nutrition Institute. Informações Agronômicas, Piracicaba, 118(2), 1-24.
Kobayashi, M., Kouzu, N., Inami, N., Toyooka, K., Konishi, Y., Matsuoka, K., & Matoh, T. (2011). Characterization of Arabidopsis CTP:3-Deoxy-D-manno-2-Octulosonate Cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis. Plant Cell Physiology, Kamikyo-ku, 52(10), 1832-1843.
Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, Palo Alto, 63(2), 131-152.
Kopittke, P.M., ,Menzies, N.W., Wang, P., & Wehr, J.B. (2014).The rhizotoxicity of metal cations is related to their strength of binding to hard ligands. Environmental Toxicology and Chemistry, Granada, 33(2), 268-277.
Kopittke, P.M., Blamey, P.C., Wang, P., & Menzies, N.W. (2011). Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings. Journal of Experimental Botany, Oxford, p.1-9.
Landi, M., Remorini, D., Pardossi,A., & Guidi, L. (2013). Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. Journal of Plant Research. Bunkyo-ku, 78(126), 775-786.
Lee, S. H., Kim, W. S., & Han, T. H. (2009). Effects of post-harvest foliar boron and calcium applications on subsequent season`s pollen germination and pollen tube growth of pear (Pyrus pyrifolia). Scientia Horticulturae, Kentucky, 122(4), 77-82.
Li, B., McKeand, S.E., & Allen, H.L. (1991). Genetic variation in nitrogen use efficiency of loblolly pine seedlings. Forest Science, Bethesda, 37(2), p.613-626.
Li, H., Wang, L., & Yang, Z. M. (2015). Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency. Gene, Amsterdam, 554(1), 16-24.
Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M,. Cheung, F., Town, C.D., & Harrison, M.J. (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant Journal, Oxford, 12(50), 529–544.
Liu, L., Park, J., Siegal, D.A., McCaety, M, R., & Clark, K.D. (2014). Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science, Washington, 343(6167), 163-167.
Lima, C. S. M. Gonçalves, M. A., Tomaz, Z. F. P., Rufato, A. de R., & Fachinello, J. C. (2010). Sistemas de tutoramento e épocas de transplante de physalis. Ciência Rural, Santa Maria, 40(12), 2472-2479.
Lima, R. L.S., Severino, L.S., Cazetta, J.O., Azevedo, C.A.V., Sofiatti, V., & Arriel, N.H.C. (2011). Redistribuição de nutrientes em folhas de pinhão-manso entre estádios fenológicos. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, 15(4), 1175-1179.
Loneragan, J. F. (2012). Distribution and movement of manganese in plants. Graham, R. D. et al. (eds.). Manganese in soils and plants. Glen Osmond, 113-124
López, J., Vega-Gálvez, A., Torres, M.J., Lemus-Mondaca, R., Quispe-Fuentes, I., & Di Scala, K. (2013). Effect of dehydration temperature on physico-chemical proerties and antioxidante capacity of goldenberry (Physalis peruviana L.). Chilean Journal of Agricultural Research, Chillán, 73(12), 293-300.
Luchese, C. L., Gurak, D., & Marczak, L. D. F. (2015). Osmotic dehydration of Physalis (Physalis peruviana L.): Evaluation of water loss and sucrose incorporation and the quantification of carotenoids. LWT - Food science and technology, Campinas, 63(5), 1128-1136.
Marschner, (2012). Mineral nutrition of higher plants. Elsevier Ltd. (3a ed.), 2012. 651 p.
Mascarenhas, H. A., Esteves, J.A.F., Wutke. E.B., Reco, P.C., & Leão, P.C.L. (2013). Deficiência e toxicidade visuais de nutrientes em soja, Nucleus, Ituverava, 10(2).
Melo, A.S., Silva Júnior, C.D., Fernandes, P.D., Sobral, L.F., Brito, M.E.B., & Dantas, J.D.M. (2008). Alterações das características fisiológicas da bananeira sob condições de fertirrigação, Ciência Rural, Santa Maria, 39(3), 733-741.
Millaleo, R., Reyes-Díaz, M., Alberdi. M., Ivanov, A.G., Krol, M., & Hüner, N.P.A (2013). Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. Journal of Experimental Botany, 64(2), 343-354.
Miranda, R. S., Sudério, F.B., Sousa., A.F., & Gomes Filho., E. (2010). Deficiência nutricional em plântulas de feijão-de-corda decorrente da omissão de macro e micronutrientes, Revista Ciência Agronômica, Fortaleza, 41(3), 326-333.
Moschini, B.P., Coelho, V.A.T., Peche, P.M., Souza, F.B.M., Coutinho, G., Barbosa, C.M.A., & Freire, A.I. (2017). Crescimento e diagnose de deficiências nutricionais em Physalis peruviana L. Revista Agropecuária Técnica, Areia, 38(4), 169-176.
Mukhopadhyay, M., Ghosh, P., & Mondal, T. (2013). Effect of boron deficiency on photosynthesis and antioxidant responses of young tea plantlets. Rus. Journal Plant Physiology, Chicago, 60(5), 633-639.
Muniz, J., Kretzschmar, A.A., Rufato, L., Pelizza, T.g., Alencar, T.M., Duarte, E., Lima, A.P.F., & Garanhani, F. (2011). Sistemas de condução para o cultivo de Physalis no Planalto Catarinense. Revista Brasileira Fruticultura, Jaboticabal, 33(4), 830-833.
Muniz J., Kretzschmar, A.A., Rufato, L., Pelizza, T.R., Rufato, A.D.R., & Macedo, T.A. (2014). General aspects of Physalis cultivation, Ciência Rural, Santa Maria, 44(6), p.964-970.
Nagajyoti, C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, Berlin, 8(3), 199–216.
Ozturk, M. et al. (2010). Boron and plants. In: Ashraf, M. (ed.). Plant adaptation and phytoremediation. Springer Books, 275-310.
Peiter, E., Montanini, B., Gobert, A., Pedas, P., Husted, S., Maathuis, F.J.M., Blaudez, D., Chalot, M., & Sanders, D. (2007). A secretory pathway ñ localized diffusion facilitator confers plant manganese tolerance. Proceedings of the National Academy of Sciences, Calcutta, 104(20), 8532-8537.
Pinho, L., & Campostrini, E. (2010). Plant Physiology Labora et al. Boron deficiency affects gas exchange and photochemical efficiency (JPI test parameters) in green dwarf Coconut. Journal of Plant Nutrition, New York, 33(2), 439-451.
Pinto, C. M., Távora, F. J. A. F., & Pinto, O. R. O. (2014). Relações hídricas, trocas gasosas em amendoim, gergelim e mamona submetidos a ciclos de deficiência hídrica, Revista AGROTEC, Porto, 35(1), 31–40.
Ramadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44, 1830-1836.
Rodrigues, E., Rockenbach, I.B., Cataneo, C., Valdemiro, L., Chaves, E.S., & Fett, R. (2009). Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Ciência e Tecnologia de Alimentos, Campinas, 29(3), 642-645.
Schmidt, S. B., Jensen, E., & Husted, S. (2016). Manganese deficiency in plants: the impact on photosystem II. Trends in plant science, Cambridge, 21(7), 622-632.
Shi, G., Sun, L., & Wang, X. (2014). Leaf responses to iron nutrition and low cadmium in peanut: anatomical properties in relation to gas exchange. Plant Soil, Western, 99–111.
Siddqi, M.Y., & Glass, A.D.M. (1981). Utilization index: a modified approach to the estimation and comparison of nutrient efficiency in plants. Journal of Plant Nutrition, New York, 4(3), p.289-302.
Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes. 2.ed. Brasília: Embrapa Informações Tecnológicas, 627 p.
Socha, A. L., & Guerinot, M. L. (2014). Mn-euvering manganese: the role of transporter gene family member sin manganese up take and mobilization in plants. Frontiers in Plant Science, Lausanne Switzerland, 5(2), 1-16.
Swiader, J.M., Chyan, Y., & Freiji, F.G. (1994). Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids, Journal of Plant Nutrition, New York, 17(10), 1687-1699.
Taiz, L., Zeiger, E., Moller, I., & Murphy, A. (2017) Fisiologia e desenvolvimento vegetal. 6.ed. Porto Alegre: Artmed, 888
Vitti, G. C., & Serrano, C. G. E. (2017). O zinco na agricultura. Agrotecnologia, Ipameri, v. 3, p.10-11.
Werner, A. K., & Witte, C. The biochemistry of nitrogen remobilization: purines rings catabolism. Trends in Plant Science, Cambridge, v. 16, 381-387, 2011.
Wimmer, M. A., & Eichert, T. (2013). Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, Clare, 203(204) 25-32.
Xavier, C. V., & Natale, W. (2017). Influência do boro no teor, acúmulo e eficiência nutricional em porta-enxertos de caramboleira, Revista Brasileira de Ciências Agrárias, Recife, 12, (1), 6-13.
Yadegari, M., & Shakerian, A. (2014). Effects of micronutrients foliar application on essential oils of lemom balm (Melissa officinalis L.). Advances in Environmental Biology, Iran, 8(4), 1063-1068.
Yruela, I. (2009). Copper in plants: acquisition, transport and interactions. Functional Plant Biology, Melbourne, 36(5), 409-430.
Yruela, I. (2013). Transition metals in plant photosynthesis. Metallomics, Indiana, 5(9), 1090-1109.
Zanão Júnior, L. A. (2010). Absorção de cálcio e ferro por arroz cultivado em solução nutritiva com doses de silício e manganês, Scientia Agraria, Curitiba, 11(3), 263-269.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Patrícia Lage; Enilson de Barros Silva; Evander Alves Ferreira; Josiane Costa Maciel; Cássia Michele Cabral
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.