Micro CT assessment of the effect of single and fractionated X radiation doses in rats tibias
DOI:
https://doi.org/10.33448/rsd-v11i7.30510Keywords:
X-Ray Microtomography; X-Ray Therapy; Dose Fractionation; Radiation Dosage; Radiation, Ionizing.Abstract
The aim of this study was to evaluate the effect of X radiation in single and fractionated doses in tibias of rats by micro-computer tomography (µCT) analysis. The sample was consisted by 20 male rats, divided into 3 groups: Control, Single dose and Fractionated dose. The rats were submitted to a radiation X exposure on lower limbs. The single dose group was exposed to single radiation of 15 gray (Gy), while the fractionated group was submitted to three irradiation sessions of 5 Gy each, totaling 15 Gy. After 24 hours and 25 days, the rats were euthanized; the tibias were removed and scanned using a µCT unit, SkyScan 1174 Compact Micro-CT (Kontich, Bélgica). The parameters total bone area (Tt.Ar) , cortical bone area (Ct.Ar) , total cross-sectional bone area ratio (Ct.Ar / Tt.Ar) e cortical thickness (Ct.Th) for cortical bone, e bone volume ratio (BV / TV), trabecular number (Tb.N), trabecular thickness (Tb.Th) e trabecular separation (Tb.Sp), for trabecular bone analysis were evaluated. Data were submitted to one-way ANOVA and Tukey’s test (α = 0.05). The µCT evaluation showed significant differences on Tt.Ar and Tb.Sp parameters (p<0,05). It was observed a lower Tt.Ar in the fractionated group compared to control, and higher Tb.Sp in the group receiving a single dose when compared to the control and fractionated groups. It is concluded, in relation to bone microarchitecture, that the radiation X in fractionated doses presents more deleterious effects on the cortical bone and when in singe doses, more damage on trabecular spaces, leading to a higher porosity.
References
Baird, E., & Taylor, G. (2017). X-ray micro computed-tomography. Current Biology, 289-291. doi:10.1016/j.cub.2017.01.066.
Barth, H. D., Zimmermann, E. A., Schaible, E., Tang, S. Y., Alliston, T. & Ritchie, R. O. (2011). Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials, 8892-8904.
Baxter, N. N., Habermann, E. B., Tepper, J. E., Durham, S. B. & Virnig, B. A. (2005). Risk of Pelvic Fractures in Older Women Following Pelvic Irradiation. American Medical Association, 294, 2585-2593.
Bouxsein, M. L., Boyd, S. K., Christiansen, B. A., Guldberg, R. E., Jepsen, K. J., ... Müller, R. (2010). Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research, 1468-1486. doi:10.1002/jbmr.141.
Chen, M., Huang, Q., Xu, W., She C., Xie, Z. G., ... Mao, Y. T. (2014). Lowdose X-ray irradiation promotes osteoblast proliferation, differentiation and fracture healing. PLoS One.
Fernandes, J. S., Appoloni, C. R., & Fernandes, C. P. (2016). Accuracy evaluation of an X-ray microtomography system. Micron, 34-38. doi:10.1016/j.micron.2016.03.007.
Furdui, C. M. (2014). Ionizing Radiation: Mechanisms and Therapeutics. Antioxidants & Redox Signaling, 218-220. doi:10.1089/ars.2014.5935.
Guéguen, Y., Bontemps, A., & Ebrahimian, T. G. (2018). Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cellular and Molecular Life Sciences. doi:10.1007/s00018-018-2987-5.
Hamilton, S. A., Pecaut, M. J., Gridley, D.S., Travis, N. D., Bandstra, E. R., ... Willey, J. S. (2006). A murine model for bone loss from therapeutic and space-relevant sources of radiation. J Appl Physiol, 789-793.
Hong, J. H., Chiang C. S., Tsao, C. Y., Lin, P. Y., McBride W. H. & Wu C. J. (1999). Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. International Journal of Radiation Biology, 75(11), 1421-1427.
Hutchinson, F. (1966). The Molecular Basis for Radiation Effects on Cells. Cancer Research, 2045-2052.
Iliakis, G., Wang, Y., Guan, J. & Wang, H. (2003). DNA damage checkpoint control in cells exposed to ionizing radiation. Nature Publishing Group, 5834-5847.
Irie, M. S., Rabelo, G. D., Spin-Neto, R., Dechichi, P., Borges, J. S., & Soares, P. B. F. (2018). Use of Micro-Computed Tomography for Bone Evaluation in Dentistry. Brazilian Dental Journal, 227-238. doi:10.1590/0103-6440201801979.
Kondo, H., Searby, N. D., Mojarrab, R., Phillips, J., Alwood, J., Yumoto, K., … Globus, R. K. (2009). Total-Body Irradiation of Postpubertal Mice with 137CsAcutely Compromises the Microarchitecture of Cancellous Bone and Increases Osteoclasts. Radiation Research, 171(3), 283-289.
Lieshout, H. F. J., & Bots, C. P. (2013). The effect of radiotherapy on dental hard tissue—a systematic review. Clinical Oral Investigations, 17-24. doi:10.1007/s00784-013-1034-z.
Lima, F., Swift, J. M., Greene, E. S., Allen, M. R., Cunningham, D. A., ... Braby, L. A. (2017). Exposure to Low-Dose X-Ray Radiation Alters Bone Progenitor Cells and Bone Microarchitecture. Radiation Research, 188(4), 433–442.
Lucatto, S. C., Guilherme, A., Dib, L. L., Segreto, H. R. C., Alves, M. T. de S., Gumieiro, E. H., … Leite, R. A. (2011). Effects of ionizing radiation on bone neoformation: histometric study in Wistar rats tibiae. Acta Cirurgica Brasileira, 475-480. doi:10.1590/s0102-8650201100060.
Ma, Y., & Shen, G. (2012). Distraction osteogenesis after irradiation in rabbit mandibles. British Journal of Oral and Maxillofacial Surgery, 50(7), 662–667.
Mendes, E. M., Irie, M. S., Rabelo, G. D., Borges, J. S., Dechichi, P., Diniz, R. S., ... Soares, P. B. F.. (2019). Effects of ionizing radiation on woven bone: influence on the osteocyte lacunar network, collagen maturation, and microarchitecture. Clinical Oral Investigations. doi:10.1007/s00784-019-03138-x.
Miranda, R. R. de, Ribeiro, T. E., Silva, E. L. C. da, Simamoto Júnior, P. C., Soares, C. J., & Novais, V. R. (2021). Effects of fractionation and ionizing radiation dose on the chemical composition and microhardness of enamel. Archives of Oral Biology. doi:10.1016/j.archoralbio.2020.
Mitchell, M. J. & Logan, P. M.. (1998). Radiation-induced. Scientific Exhibit, 18(5), 1239-1246.
Nenoi, M., Wang, B., & Vares, G. (2014). In vivo radioadaptive response. Human & Experimental Toxicology, 34(3), 272–283. doi:10.1177/0960327114537537.
Oest, M. E., Franken, V., Kuchera, T., Strauss, J., & Damron, T. A. (2015). Long-term loss of osteoclasts and unopposed cortical mineral apposition following limited field irradiation. J Orthop Res, 334-342.
Reisz, J. A., Bansal, N., Qian, J., Zhao, W., & Furdui, C. M. (2014). Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection. Antioxidants & Redox Signaling, 21(2), 260–292.
Rocha, F. S., Dias, P. C., Limirio, P. H. J. O., Lara, V. C., Batista, J. D., & Dechichi, P. (2017). High doses of ionizing radiation on bone repair: is there effect outside the irradiated site? Injury, 671-673. doi:10.1016/j.injury.2016.11.033.
Sinibaldi, R., Conti, A., Sinjari, B., Spadone, S., Pecci, R., Palombo, M., … Della Penna, S. (2017). Multimodal-3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process. Journal of Tissue Engineering and Regenerative Medicine, 750-761. doi:10.1002/term.2494.
Soares, P. B. F., Soares, C. J., Limirio, P. H. J. O., de Jesus, R. N. R., Dechichi, P., Spin-Neto, R. ... Zanetta-Barbosa, D. (2018). Effect of ionizing radiation after-therapy interval on bone: histomorphometric and biomechanical characteristics. Clinical Oral Investigations, 1-9.
Song, S. & Lambert, P. F. (1999). Different Responses of Epidermal and Hair Follicular Cells to Radiation Correlate with Distinct Patterns of p53 and p21 Induction. American Journal of Pathology, 155(4), 1121-1127.
Trejo-Iriarte, C. G., Serrano-Bello, J., Gutiérrez-Escalona, R., Mercado-Marques, C., García-Honduvilla, N. ... Buján-Varela, J. (2019). Evaluation of bone regeneration in a critical size cortical bone defect in rat mandible using microCT and histological analysis. Archives of Oral Biology. doi: 10.1016/j.archoralbio.2019.
Willey, J. S., Lloyd, S. A., Nelson, G. A., & Bateman, T. A. (2011). Ionizing radiation and bone loss: space exploration and clinical therapy applications. Clin Rev Bone Miner Metab, 54-62.
Williams, H. J., & Davies, A. M. (2005). The effect of X-rays on bone: a pictorial review. European Radiology, 16(3), 619–633.
Zebaze, R., & Seeman, E. (2014). Cortical Bone: A Challenging Geography. Journal of Bone and Mineral Research, 24-29. doi:10.1002/jbmr.2419.
Zhang, W. B., Zheng, L. W., Chua, D., & Cheung, L. K. (2010). Bone Regeneration After Radiotherapy in an Animal Model. Journal of Oral and Maxillofacial Surgery, 2802-2809. doi:10.1016/j.joms.2010.04.024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Stefanya Dias de Oliveira; Luciana Neves Machado Rezende; Rafael Antônio Velôso Caixeta; Carolina Cintra Gomes; Priscilla Barbosa Ferreira Soares; Solange Maria de Almeida; Gabriella Lopes de Rezende Barbosa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.