Application of instrumentation in cotton cultivation: systematic literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.30581

Keywords:

Agriculture; Precision Agriculture; Agricultural Instrumentation; Agricultural machinery.

Abstract

The present work aims to carry out a Systematic Review of the Literature, in order to understand the use of instrumentation applied to cotton cultivation. For this purpose, a search was carried out in four databases and the StArt software was used for data analysis and selection of works. For a total of 1,914 works obtained from the databases, 30 were selected based on selection criteria for full reading. In the end, it was concluded that the works have several applications, mainly related to the classification of cotton for the industry, in addition, the work also pointed out a great possibility of investment and application of instrumentation in cotton culture at various stages of its production chain.

References

AMPA – Associação Mato-Grossense Dos Produtores De Algodão (2021). História do Algodão. Disponível em: https://ampa.com.br/historia-doalgodao/. Acesso em 24 out. 2021.

Baio, F. H. R et al (2017). Financial analysis of the investment in precision agriculture techniques on cotton crop. Engenharia Agrícola, v. 37, p. 838-847, 2017. DOI: 10.1590/1809-4430Eng.Agric.v37n4p838-847/2017

Baio, F. H. R. et al (2019). In situ remote sensing as a strategy to predict cotton seed yield. Bioscience Journal, v. 35, n. 6, 2019. DOI: 10.14393/BJ-v35n6a2019-42261

Baio, F. H. R et al (2018). Relationship between cotton productivity and variability of NDVI obtained by Landsat images. Bioscience Journal, v. 34, n. 6, 2018. DOI: 10.14393/BJ-v34n6a2018-39583

Bronson, K. F. et al (2021). Use of an ultrasonic sensor for plant height estimation in irrigated cotton. Agronomy Journal, v. 113, n. 2, p. 2175-2183, 2021. DOI: 10.1002/agj2.20552

Butler, S. et al (2020). Making the Cotton Replant Decision: A Novel and Simplistic Method to Estimate Cotton Plant Population from UAScalculated NDVI. The Journal of Cotton Science, 24:104-111, 2020.

Cao, L. et al (2017). Potential dermal and inhalation exposure to imidacloprid and risk assessment among applicators during treatment in cotton field in China. Science of the total environment, v. 624, p. 1195-1201, 2018. DOI: 10.1016/j.scitotenv.2017.12.238

CONAB – Companhia Nacional De Abastecimento (2021). Acompanhamento da safra brasileira de grãos. Safra 2020/21, 7º levantamento. Disponível em: https://www.conab.gov.br/info-agro/safras/. Acesso em 24 out. 2021.

Coêlho, J. D. (2021). Algodão: Produção e Mercados. Caderno Setorial, Banco do Nordeste. Disponível em: https://www.bnb.gov.br/s482dspace/bitstream/123456789/808/1/2021_CDS_ 166.pdf. Acesso em 24 out. 2021.

Chen, X. et al (2020). Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate. Agricultural Water Management, v. 234, p. 106139, 2020. DOI: 10.1016/j.agwat.2020.106139

Delhom, C.D. et al (2020). Engineering And Ginning. The Journal of Cotton Science, 24:189-196, 2020.

Feng, A. et al (2020). Yield estimation in cotton using UAV-based multi-sensor imagery. Biosystems Engineering, v. 193, p. 101-114, 2020. DOI: 10.1016/j.biosystemseng.2020.02.014

Fue, K. et al (2020). Autonomous Navigation of a Center-Articulated and Hydrostatic Transmission Rover using a Modified Pure Pursuit Algorithm in a Cotton Field. Sensors, v. 20, n. 16, p. 4412, 2020. DOI: 10.3390/s20164412

Gaikwad, S. V. et al (2021). An innovative IoT based system for precision farming. Computers and Electronics in Agriculture, v. 187, p. 106291, 2021. DOI: 10.1016/j.compag.2021.106291

Ibragimov, N et al (2021). Cotton irrigation scheduling improvements using wetting front detectors in Uzbekistan. Agricultural Water Management, v. 244, p. 106538, 2021. DOI: 10.1016/j.agwat.2020.106538

Larson, J. A. et al (2020). Effects of landscape, soils, and weather on yields, nitrogen use, and profitability with sensor-based variable rate nitrogen management in cotton. Agronomy, v. 10, n. 12, p. 1858, 2020. DOI: 10.3390/agronomy10121858

LV, Y et al (2020). Cotton Appearance Grade Classification Based on Machine Learning. Procedia Computer Science, v. 174, p. 729-734, 2020. DOI: 10.1016/j.procs.2020.06.149

Martin, D. E.& Latheef, M. A. (2018). Active optical sensor assessment of spider mite damage on greenhouse beans and cotton. Experimental and Applied Acarology, v. 74, n. 2, p. 147-158, 2018. DOI: 10.1007/s10493-018-0213-7

Martin, D. E.& Latheef, M. A. (2017). Remote sensing evaluation of two-spotted spider mite damage on greenhouse cotton. JoVE (Journal of Visualized Experiments), n. 122, p. e54314, 2017. DOI: 10.3791/54314

Papadopoulos, A. V. et al (2018). Weed mapping in cotton using groundbased sensors and GIS. Environmental monitoring and assessment, v. 190, n. 10, p. 1-17, 2018. DOI: 10.1007/s10661-018-6991-x

PelletieR, M. G.& Wanjura, J D.& Holt, G. A. (2019). Electronic design of a cotton harvester yield monitor calibration system. AgriEngineering, v. 1, n. 4, p. 523-538, 2019. DOI: 10.3390/agriengineering1040038

Pelletier, M. G. & Wanjura, J. D.& Holt, G. A. (2019). Embedded micro-controller software design of a cotton harvester yield monitor calibration system. AgriEngineering, v. 1, n. 4, p. 485-495, 2019. DOI: 10.3390/agriengineering1040035

Pelletier, M. G. & Wanjura, J. D.& Holt, G. A. (2019). Man-MachineInterface Software Design of a Cotton Harvester Yield Monitor Calibration System. AgriEngineering, v. 1, n. 4, p. 511-522, 2019. DOI: 10.3390/agriengineering1040037

Podestà, I. D. (2021). Valor Bruto da Produção está estimado em R$ 1,109 trilhões para este ano. Ministério da Agricultura, Pecuária e Abastecimento. Disponível em <https://www.gov.br/agricultura/pt-br/assuntos/noticias/valor-bruto-daproducao-esta- estimado-em-r-1-109-trilhao-para-este-an>. Acesso em 24 out. 2021.

Rozenstein, O. et al. Estimating cotton water consumption using a time series of Sentinel-2 imagery. Agricultural water management, v. 207, p. 44-52, 2018. DOI: 10.1016/j.agwat.2018.05.017

Rozenstein, O. et al. Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements. Agricultural Water Management, v. 223, p. 105715, 2019. DOI: 10.1016/j.agwat.2019.105715

Souza, H. B. & Baio, F. H. & Neves, D C. (2017). Using passive and active multispectral sensors on the correlation with the phenological indices of cotton. Engenharia Agrícola, v. 37, p. 782-789, 2017. DOI: 10.1590/1809-4430- Eng.Agric.v37n4p782-789/2017

Suassuna, N. D.& Silva, J. C. D.& Bettiol (2019), W. Uso do Trichoderma na cultura do algodão. In: Meyer, M. C.& Mazaro, S. M.& Silva, J. C. Trichoderma: Uso na agricultura. 1 ed. Brasília -DF: Embrapa, 2019, p. 361 – 380. Disponível em: https://www.researchgate.net/profile/Gabriel-Moura-Mascarin/publication/340331300_

Industrial_production_of_Trichoderma_Chapter_08__in_Portuguese/links/5e8 3fa9d299bf1 30796dc569/Industrial-production-of-Trichoderma-Chapter-08in Portuguese.pdf#page=361. Acesso em 24 out. 2021

IBGE – Instituto Brasileiro de Geografia e Estatística (2021). Produção de Algodão herbáceo. Disponível em: https://www.ibge.gov.br/explica/producao- agropecuaria/algodao-herbaceo/br. Acesso em 24 out. 2021

Thompson, Alison L. et al (2019). Comparing nadir and multi-angle view sensor technologies for measuring in-field plant height of upland cotton. Remote Sensing, v. 11, n. 6, p. 700, 2019. DOI: 10.3390/rs11060700

Thorp, Kelly R. et al (2017). Cotton irrigation scheduling using a crop growth model and FAO-56 methods: Field and simulation studies. Transactions of the ASABE, v. 60, n. 6, p. 2023- 2039, 2017. DOI: 10.13031/trans.12323

Thorp, Kelly R. et al (2019). Novel methodology to evaluate and compare evapotranspiration algorithms in an agroecosystem model. Environmental Modelling & Software, v. 119, p. 214-227, 2019. DOI: 10.1016/j.envsoft.2019.06.007

Trevisan, Rodrigo Gonçalves et al (2018). Management of Plant Growth Regulators in Cotton Using Active Crop Canopy Sensors. Agriculture, v. 8, n. 7, p. 101, 2018. DOI: 10.3390/agriculture8070101

Uddin, Jasim et al (2018). Smart automated furrow irrigation of cotton. Journal of Irrigation and Drainage Engineering, v. 144, n. 5, p. 04018005, 2018. DOI:10.1061/(ASCE)IR.1943- 4774.0001282

USDA – United States Department Of Agriculture (2021). Cotton: World Markets and Tarde. Disponível em: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads. Acesso em 24 out. 2021.

Yu, Jianming et al (2019). Nitrogen Consumption and Productivity of Cotton under Sensor‐based Variable‐rate Nitrogen Fertilization. Agronomy Journal, v. 111, n. 6, p. 3320-3328, 2019. DOI: 10.2134/agronj2019.03.0197

Zare, Ehsan et al (2020). Two-dimensional time-lapse imaging of soil wetting and drying cycle using EM38 data across a flood irrigation cotton field. Agricultural Water Management, v. 241, p. 106383, 2020. DOI:10.1016/j.agwat.2020.106383

Published

15/07/2022

How to Cite

BATISTA, N. de L. .; ARANHA, T. S. .; OLIVEIRA, K. S. M. .; RODRIGUEIRO, M. M. da S. .; MOLLO NETO, M.; SANTOS, P. S. B. dos . Application of instrumentation in cotton cultivation: systematic literature review. Research, Society and Development, [S. l.], v. 11, n. 9, p. e46511930581, 2022. DOI: 10.33448/rsd-v11i9.30581. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30581. Acesso em: 20 dec. 2024.

Issue

Section

Engineerings