Antimicrobial photodynamic activity by water-soluble curcumin against foodborne pathogens
DOI:
https://doi.org/10.33448/rsd-v11i8.30870Keywords:
Curcumin; Foodborne pathogens; Photodynamic therapy.Abstract
Foodborne diseases and microbiological control represent the major challenge for the food industry. New technologies using natural agents have attracted increasing interest. Therefore, this study aimed to evaluate the in vitro susceptibility of Staphylococcus aureus and Escherichia coli to water-soluble curcumin (WSC) combined with acidic pH and blue LED light. The minimum inhibitory concentration (MIC) and bacterial photoinactivation were conducted using different photosensitizer concentrations. For S. aureus, the combination of WSC with lactic acid and 2.5 min illumination time reduced MIC from 500 µg/mL to 15.62 µg/mL, and WSC with citric acid reduced MIC from 125 µg/mL to 7.81 µg/mL after 5 min of light exposure. WSC without illumination did not inhibit E. coli growth (MIC >1,000 µg/mL), however, when applied with photodynamic therapy (5 min blue LED illumination), WSC at 62.5 µg/mL with lactic acid and WSC at 7.81 µg/mL with citric acid eliminated E. coli cells. The results obtained suggest that water-soluble curcumin with organic acids when combined with a blue LED light was effective against foodborne pathogens.
References
Adamczak, A., Ożarowski, M., & Karpiński, T. M. (2020). Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals, 13(7), 153. https://doi.org/10.3390/ph13070153
Alippilakkotte, S., & Sreejith, L. (2018). Pectin mediated synthesis of curcumin loaded poly ( lactic acid ) nanocapsules for cancer treatment. Journal of Drug Delivery Science and Technology, 48, 66–74. https://doi.org/10.1016/j.jddst.2018.09.001
Belma, P., Kenan, Č., Dina, L., Naida, O., Nermina, Ž. S., Selma, Š., & Fahir, B. (2021). Curcumin: Natural Antimicrobial and Anti Inflammatory Agent. Journal of Pharmaceutical Research International, 32(43), 1–8. https://doi.org/10.9734/jpri/2020/v32i4331060
Bhawana, Basniwal, R. K., Buttar, H. S., Jain, V. K., & Jain, N. (2011). Curcumin Nanoparticles: Preparation, Characterization, and Antimicrobial Study. Journal of Agricultural and Food Chemistry, 59(5), 2056–2061. https://doi.org/10.1021/jf104402t
Bouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4), 1457–1474. https://doi.org/10.1002/jsfa.9357
Burel, C., Kala, A., & Purevdorj‐Gage, L. (2021). Impact of pH on citric acid antimicrobial activity against Gram‐negative bacteria. Letters in Applied Microbiology, 72(3), 332–340. https://doi.org/10.1111/lam.13420
Burns, J., McCoy, C. P., & Irwin, N. J. (2021). Synergistic activity of weak organic acids against uropathogens. Journal of Hospital Infection, 111, 78–88. https://doi.org/10.1016/j.jhin.2021.01.024
Cieplik, F., Deng, D., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A., & Maisch, T. (2018). Antimicrobial photodynamic therapy – what we know and what we don’t. Critical Reviews in Microbiology, 44(5), 571–589. https://doi.org/10.1080/1040841X.2018.1467876
CLSI. (2020). Performance standards for antimicrobial susceptibility testing, 30th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA.
de Oliveira, E. F., Tosati, J. V, Tikekar, R. V, Monteiro, A. R., & Nitin, N. (2018). Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua : Applications for fresh produce sanitation. Postharvest Biology and Technology, 137, 86–94. https://doi.org/10.1016/j.postharvbio.2017.11.014
Delgado, Y., Cassé, C., Ferrer-Acosta, Y., Suárez-Arroyo, I. J., Rodríguez-Zayas, J., Torres, A., Torres-Martínez, Z., Pérez, D., González, M. J., Velázquez-Aponte, R. A., Andino, J., Correa-Rodríguez, C., Franco, J. C., Milán, W., Rosario, G., Velázquez, E., Vega, J., Colón, J., & Batista, C. (2021). Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. Applied Sciences, 11(18), 8477. https://doi.org/10.3390/app11188477
Dias, V. H. C., Malacrida, A. M., dos Santos, A. R., Batista, A. F. P., Campanerut-Sá, P. A. Z., Braga, G., Bona, E., Caetano, W., & Mikcha, J. M. G. (2021). pH interferes in photoinhibitory activity of curcumin nanoencapsulated with pluronic® P123 against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 33, 102085. https://doi.org/10.1016/j.pdpdt.2020.102085
do Prado-Silva, L., Brancini, G. T. P., Braga, G. Ú. L., Liao, X., Ding, T., & Sant’Ana, A. S. (2022). Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control, 132, 108527. https://doi.org/10.1016/j.foodcont.2021.108527
dos Santos, R. F., Campos, B. S., Rego Filho, F. de A. M. G., Moraes, J. D. O., Albuquerque, A. L. I., da Silva, M. C. D., dos Santos, P. V., & de Araujo, M. T. (2019). Photodynamic inactivation of S. aureus with a water-soluble curcumin salt and an application to cheese decontamination. Photochemical & Photobiological Sciences, 18(11), 2707–2716. https://doi.org/10.1039/C9PP00196D
Faille, C., Cunault, C., Dubois, T., & Bénézech, T. (2018). Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innovative Food Science & Emerging Technologies, 46, 65–73. https://doi.org/10.1016/j.ifset.2017.10.002
Food and Drug Administration. (2021). Code of Federal Regulations, Title 21. p://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm
Fung, F., Wang, H., & Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41(2), 88–95. https://doi.org/10.1016/j.bj.2018.03.003
Gao, J., & Matthews, K. R. (2020). Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin. Food Control, 109, 106959. https://doi.org/10.1016/j.foodcont.2019.106959
Ghate, V., Kumar, A., Zhou, W., & Yuk, H.-G. (2015). Effect of organic acids on the photodynamic inactivation of selected foodborne pathogens using 461 nm LEDs. Food Control, 57, 333–340. https://doi.org/10.1016/j.foodcont.2015.04.029
Gutiérrez-del-Río, I., Fernández, J., & Lombó, F. (2018). Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols. International Journal of Antimicrobial Agents, 52(3), 309–315. https://doi.org/10.1016/j.ijantimicag.2018.04.024
Hewlings, S., & Kalman, D. (2017). Curcumin: A Review of Its Effects on Human Health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092
Hilmi, B., Bustami, Y., Trongsatitkul, T., & Abdul Hamid, Z. A. (2019). The Effect of Natural Antimicrobial Agents on Staphylococcus aureus and Escherichia coli Growth. Journal of Physical Science, 30(Supp.2), 55–63. https://doi.org/10.21315/jps2019.30.s2.5
Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez, D. A. G., Nakamura, C. V., & Dias Filho, B. P. (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memórias Do Instituto Oswaldo Cruz, 97(7), 1027–1031. https://doi.org/10.1590/S0074-02762002000700017
Kim, H. W., Lee, N. Y., Park, S. M., & Rhee, M. S. (2020). A fast and effective alternative to a high-ethanol disinfectant: Low concentrations of fermented ethanol, caprylic acid, and citric acid synergistically eradicate biofilm-embedded methicillin-resistant Staphylococcus aureus. International Journal of Hygiene and Environmental Health, 229, 113586. https://doi.org/10.1016/j.ijheh.2020.113586
Lin, Y., Hu, J., Li, S., Hamzah, S. S., Jiang, H., Zhou, A., Zeng, S., & Lin, S. (2019). Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon. Molecules, 24(13), 2374. https://doi.org/10.3390/molecules24132374
Lund, P., Tramonti, A., & De Biase, D. (2014). Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 38(6), 1091–1125. https://doi.org/10.1111/1574-6976.12076
Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., & Matioli, G. (2014). Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry, 153, 361–370. https://doi.org/10.1016/j.foodchem.2013.12.067
Mirzahosseinipour, M., Khorsandi, K., Hosseinzadeh, R., Ghazaeian, M., & Shahidi, F. K. (2020). Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagnosis and Photodynamic Therapy, 29, 101639. https://doi.org/10.1016/j.pdpdt.2019.101639
Polat, E., & Kang, K. (2021). Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines, 9(6), 584. https://doi.org/10.3390/biomedicines9060584
Powell, D. A., Jacob, C. J., & Chapman, B. J. (2011). Enhancing food safety culture to reduce rates of foodborne illness. Food Control, 22(6), 817–822. https://doi.org/10.1016/j.foodcont.2010.12.009
Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., & Steinmann, E. (2019). Anti-infective Properties of the Golden Spice Curcumin. Frontiers in Microbiology, 10, 1–16. https://doi.org/10.3389/fmicb.2019.00912
Priyadarsini, K. I. (2009). Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. Journal of Photochemistry and Photobiology C: Photochemistri Reviews, 10 (2), 81-95. https://doi.org/10.1016/j.jphotochemrev.2009.05.001
Scharff, R. L. (2015). State Estimates for the Annual Cost of Foodborne Illness. Journal of Food Protection, 78(6), 1064–1071. https://doi.org/10.4315/0362-028X.JFP-14-505
Silva, A. C. da, Santos, P. D. de F., Silva, J. T. do P., Leimann, F. V., Bracht, L., & Gonçalves, O. H. (2018). Impact of curcumin nanoformulation on its antimicrobial activity. Trends in Food Science & Technology, 72, 74–82. https://doi.org/10.1016/j.tifs.2017.12.004
Wang, Z., Jia, Y., Li, W., & Zhang, M. (2021). Antimicrobial photodynamic inactivation with curcumin against Staphylococcus saprophyticus, in vitro and on fresh dough sheet. LWT, 147, 111567. https://doi.org/10.1016/j.lwt.2021.111567
World Health Organization. (2015). Who estimates of the global burden of foodborne diseases: foodborne diseases burden epidemiology reference group 2007-2015. https://doi.org/10.1007/978-3-642-27769-6_3884-1
World Health Organization. (2020). Food Safety. https://www.who.int/NEWS-ROOM/FACT-SHEETS/DETAIL/FOOD-SAFETY
Yang, S.-C., Lin, C.-H., Aljuffali, I. A., & Fang, J.-Y. (2017). Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Archives of Microbiology, 199(6), 811–825. https://doi.org/10.1007/s00203-017-1393-y
Zhu, S., Song, Y., Pei, J., Xue, F., Cui, X., Xiong, X., & Li, C. (2021). The application of photodynamic inactivation to microorganisms in food. Food Chemistry: X, 12, 100150. https://doi.org/10.1016/j.fochx.2021.100150
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luana Carolina Martins Rosa; Joao Vitor de Oliveira Silva; Maíra Dante Formagio; Andreia Farias Pereira Batista; Camila Fabiano de Freitas; Fernanda Vitória Leimann; Benício Alves de Abreu Filho; Miguel Machinski Junior; Jane Martha Graton Mikcha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.