Potential of Aspergillus niger Tiegh 8285 in the bioremediation of water contaminated with benzonitrile

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.31078

Keywords:

Biocatalysis; Central composite design; Microorganism; Optimization.

Abstract

Benzonitrile is a compound found in pesticides. The use of these pesticides can cause environmental contamination, and the search for non-aggressive methods to eliminate these residues is necessary. In this study, fungi Aspergillus isolated from cocoa were investigated for their benzonitrile bioremediation potential. The fungi were cultured in a solid medium supplemented with nitrile and glucose (a), nitrile (b), and glucose (c). Independent variables: time, inoculum, and nitrile were optimized using a central composite design to determine the best microbial growth and wet biomass (dependent variable) as a response in the bioremediation process. A. niger Tiegh 8285 showed good adaptation, especially in situation b in nitrile 5 days, 3 mycelial inoculums and 54 μL of benzonitrile for microbial growth, resulting in 1.83 ± 0.03 g of wet biomass, confirming the efficiency of the selected mathematical model. A. niger Tiegh 8285 proved to be a promising bioremediation agent for benzonitrile.

References

Aboyeji, O. O., Oloke, J. K., Arinkoola, A. O., Oke, M. A., & Ishola, M. M. (2020). Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger. Scientific. African, 10, e00554. https://doi.org/10.1016/j.sciaf.2020.e00554

Agarwal, A., & Nigam, V. K. (2017). Enhanced Production of Nitrilase from Streptomyces sp. MTCC 7546 by Response Surface Method. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87, 603-609. https://doi.org/10.1007/s40011-015-0638-2

An, X., Cheng, Y., Huang, M., Sun, Y., Wang, H., Chen, X., Wang, J., Li, D., & Li, C. (2018) Treating organic cyanide-containing groundwater by immobilization of a nitrile-degrading bacterium with a biofilm-forming bacterium using fluidized bed reactors. Environmental Pollution, 237, 908-916. https://doi.org/10.1016/j.envpol.2018.01.087

An, X., Cheng, Y., Miao, L., Chen, X., Zang, H., & Li, C. (2020). Characterization and genome functional analysis of an efficient nitrile degrading bacterium, Rhodococcus rhodochrous BX2, to lay the foundation for potential bioaugmentation for remediation of nitrile-contaminated environments. Journal of Hazardous Materials, 389, 121906. https://doi.org/10.1016/j.jhazmat.2019.121906

Bezerra, M. A., Lemos, V. A., Novaes, C. G., de Jesus, R. M., Souza Filho, H. R., Araújo, S. A., & Alves, J. P. S. (2020). Application of mixture design in analytical chemistry. Microchemical Journal, 152, 104336. https://doi.org/10.1016/j.microc.2019.104336

Catania, V., Lopresti, F., Cappello, S., Scaffaro, R., & Quatrini, P. (2020). Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water. New Biotechnology, 58, 25-31. https://doi.org/10.1016/j.nbt.2020.04.001

Chaudhary, D. K., & Kim, J. (2019). New insights into bioremediation strategies for oil-contaminated soil in cold environments. International Biodeterioration & Biodegradation, 142, 58-72. https://doi.org/10.1016/j.ibiod.2019.05.001

Chmura, A., Shapovalova, A. A., van Pelt, S., van Rantwijk, F., Tourova, T. P., Muyzer, G., & Sorokin, D. Y. (2008). Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils. Applied Microbiology and Biotechnology, 81, 371–378. https://doi.org./10.1007/s00253-008-1685-x

Coady, T. M., Coffey, L. V., O’Reilly, C., Owens, E. B., & Lennon, C. M. (2013). A high throughput screening strategy for the assessment of nitrile-hydrolyzing activity towards the production of enantiopure β-hydroxy acids. Journal of Molecular Catalysis B: Enzymatic, 97, 150-155. https://doi.org/10.1016/j.molcatb.2013.08.001

Dao, A. T. N., Vonck, J., Janssens, T. K. S., Dang, H. T. C., Brouwer, A., & de Boer, T. E. (2019). Screening white-rot fungi for bioremediation potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Industrial Crops and Products, 128, 153-161. https://doi.org/10.1016/j.indcrop.2018.10.059

De Oliveira, J. R., Mizuno, C. M., Seleghim, M. H. R., Javaroti, D. C. D., Rezende, M. O. O., Landgraf, M. D., Sette, L. D., & Porto, A. L. M. (2013). Biotransformation of Phenylacetonitrile to 2-Hydroxyphenylacetic Acid by Marine Fungi. Marine Biotechnology, 15, 97-103. https://doi-/10.1007/s10126-012-9464-1

De Oliveira, J. R., Seleghim, M. H. R., & Porto, A. L. M. (2014). Biotransformation of Methylphenylacetonitriles by Brazilian Marine Fungal Strain Aspergillus sydowii CBMAI 934: Eco-friendly Reactions. Marine Biotechnology, 16, 156–160. https://doi.org/10.1007/s10126-013-9534- z

Dos Santos, T. C., Reis, N. S., Silva, T. P., Machado, F. P. P., Bonomo, R. C. F., & Franco, M. (2016). Prickly Palm Cactus Husk as a Raw Material for Production of Ligninolytic Enzymes by Aspergillus niger. Food Science and Biotechnology, 25, 205-211. https://doi.org/10.1007/s10068-016-0031-9

Ferreira, S. L. C., Bruns, R. E., da Silva, E. G. P., dos Santos, W. N. L., Quintella, C. M., David, J. M., de Andrade, J. B., Breitkreitz, M. C., Jardim, I. C. S. F., & Barros Neto, B. (2020). Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatography A, 1158, 2-14. https://doi.org/10.1016/j.chroma.2007.03.051

Fu, D., Yan, Y., Yang, X., Rene, E. R., & Singh, R. P. (2020). Bioremediation of contaminated river sediment and overlying water using biologically activated beads: A case study from Shedu river, China. Biocatalysis and Agricultural Biotechnology, 23, 101492. https://doi.org/10.1016/j.bcab.2019.101492

Gowri, A. K., Karunakaran, M. J., Muthunarayanan, V., Ravindran, B., Nguyen-Tri, P., Ngo, H. H., Bui, X. T., Nguyen, X. H., Nguyen, D. D., Chang, S. W., & Chandran, T. (2020). Evaluation of bioremediation competence of indigenous bacterial strains isolated from fabric dyeing effluent. Bioresource Technology Reports, 11, 100536. https://doi.org/10.1016/j.biteb.2020.100536

Graham, D., Pereira, R., Barfield, D., & Cowan, D. (2020). Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp. Enzyme and Microbial Technology, 26, 368-373. https://doi.org/10.1016/S0141-0229(99)00169-6

Heidari, A., & Asoodeh, A. (2019). A novel nitrile-degrading enzyme (nitrile hydratase) from Ralstonia sp. ZA96 isolated from oil contaminated soils. Biocatalysis and Agricultural Biotechnology, 21, 101285. https://doi.org/10.1016/j.bcab.2019.101285

Hubadillah, S., Othmam, M. H. D., Gani, P., Sunar, N. M., Tai, Z. S., Koo, K. N., Pauzan, M. A. B., Ismail, N. J., & Zahari, S. M. S. N. S. (2020). Integrated green membrane distillation-microalgae bioremediation for arsenic removal from Pengorak River Kuantan, Malaysia. Chemical Engineering Process, 153, 107996. https://doi.org/10.1016/j.cep.2020.107996

Khan, Y. M., Munir, H., & Anwar, Z. (2019). Optimization of process variables for enhanced production of urease by indigenous Aspergillus niger strains through response surface methodology. Biocatalysis and Agricultural Biotechnology, 20, 101202. https://doi.org/10.1016/j.bcab.2019.101202

Lai, A. N., Wang, Z., Yin, Q., Zhu, R. Y., Hu, P. C., Zheng, J. W., & Zhou, S. F. (2020). Comb-shaped fluorene-based poly (arylene ether sulfone nitrile) as anion exchange membrane. International Journal of Hydrogen Energy, 45, 11148-11157. https://doi.org/10.1016/j.ijhydene.2020.02.057

Li, Q., Li, J., Jiang, L., Sun, Y., Luo, C., & Zhang, G. (2020). Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. Journal of Hazardous Materials, 403, 123895. https://doi.org/10.1016/j.jhazmat.2020.123895

Liu, C., Yuan, K., Chen, R. P., Chen, M. J., & Yu, L. (2017). Biodegradation kinetics of nitriles with easily degradable substrate by Klebsiella oxytoca GS-4-08. International Biodeterioration & Biodegradation, 118, 95-101. https://doi.org/10.1016/j.ibiod.2017.01.028

Lu, H., Yuan, Y., Campbell, D. E., Qin, P., & Cui, L. (2014). Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecological Engineering, 69, 244-254. https://doi.org/10.1016/j.ecoleng.2014.04.024

Marques, G. L., Reis, N. S., Silva, T. P., Ferreira, M. L. O., Oliveira, E. A., de Oliveira, J. R., & Franco, M. (2018). Production and Characterisation of Xylanase and Endoglucanases Produced by Penicillium roqueforti ATCC 10110 Through the Solid-State Fermentation of Rice Husk Residue. Wast and Biomass Valorization, 9, 2061-2069. https://doi.org/10.1007/s12649-017-9994-x

Mehta, A., & Basu, S. (2017). Controlled photocatalytic hydrolysis of nitriles to amides by mesoporous MnO2 nanoparticles fabricated by mixed surfactant mediated approach. Journal of Photochemistry and Photobiology A: Chemistry, 343, 1-6. https://doi.org/10.1016/j.jphotochem.2017.04.013

Neoh, C. H., Lam, C. Y., Ghani, S. M., Ware, I., Sarip, S. H. M., & Ibrahim, Z. (2016). Bioremediation of high-strength agricultural wastewater using Ochrobactrum sp. strain SZ1. 3 Biotech, 6, 1-9. https://doi.org./10.1007/s13205-016-0455-1

Papadaki, E., Kontogiannopoulos, K. N., Assimopoulou, A. N., & Mantzouridou, F. T. (2020). Feasibility of multi-hydrolytic enzymes production from optimized grape pomace residues and wheat bran mixture using Aspergillus niger in an integrated citric acid enzymes production process. Bioresource Technology, 309, 123317. https://doi.org/10.1016/j.biortech.2020.123317

Pei, X., Wang, J., Guo, W., Miao, J., & Wang, A. (2017). Efficient biodegradation of dihalogenated benzonitrile herbicides by recombinant Escherichia coli harboring nitrile hydratase-amidase pathway. Biochemical Engineering journal, 125, 88-96. https://doi-org/10.1016/j.bej.2017.05.021

Putri, D. N., Khootama, A., Perdani, M. S., Utami, T. S., & Hermansyah, H. (2020). Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Reports, 6, 331-335. https://doi.org/10.1016/j.egyr.2019.08.064

Quintella, C. M., Mata, A. M. T., & Lima, L. C. P. (2019). Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. Journal of Environmental Management, 241, 156-166. https://doi.org/10.1016/j.jenvman.2019.04.019

Salami, F., Habibi, Z., Yousefi, M., & Mohammadi, M. (2018). Covalent immobilization of laccase by one pot three component reaction and its application in the decolorization of textile dyes. International Journal of Biological Macromolecules, 120, 144-151. https://doi.org/10.1016/j.ijbiomac.2018.08.077

Saldanha-Ruiz, S., Soler-Martína, C., & Llhorens, J. (2012). Role of CYP2E1-mediated metabolism in the acute and vestibular toxicities of nineteen nitriles in the mouse. Toxicology Letters, 208, 125-132. https://doi.org/10.1016/j.toxlet.2011.10.016

Santos, E. C., de Menezes, L. H. S., Santos, C. L., Santana, P. V. B., Soares, G. A., Tavares, I. M. C., Freitas, J. S., Mota, C. M. S., Bezerra, J. L., da Costa, A. M., Uetanabaro, A. P. T., Porto, A. L. M., Franco, M., & de Oliveira, J. R. (2021). High-throughput screening for distinguishing nitrilases from nitrile hydratases in Aspergillus and application of a Box–Behnken design for the optimization of nitrilase. Biotechnology and Applied Biochemistry, 1-10. https://doi.org/10.1002/bab.2269

Sattar, H., Bibi, Z., Kamran, A., Aman, A., & Qader, S. A. A. (2019). Degradation of complex casein polymer: Production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36. Biocatalysis and Agricultural Biotechnology, 21, 101256. https://doi.org/10.1016/j.bcab.2019.101256

Serra, I., Capusoni, C., Molinari, F., Musso, L., Pellegrino, L., & Compagno, C. (2019). Marine Microorganisms for Biocatalysis: Selective Hydrolysis of Nitriles with a Salt-Resistant Strain of Meyerozyma guilliermondii. Marine Biotechnology, 21, 229 239. https://doi.org/10.1007/s10126-019-09875-0

Shah, A., & Shah, M. (2020). Characterisation and bioremediation of wastewater: A review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundwater of Sustainable Development, 11, 100383. https://doi.org/10.1016/j.gsd.2020.100383

Sicuro, B., Castelar, B., Mugetti, D., Pastorino, P., Chiarandon, A., Menconi, V., Galloni, M., & Prearo, M. (2020). Bioremediation with freshwater bivalves: A sustainable approach to reducing the environmental impact of inland trout farms. Journal of Environmental Management, 276, 111327. https://doi.org/10.1016/j.jenvman.2020.111327

Umemoto, N., Imayoshi, A., & Tsubaki, K. (2020). Nitrile oxide cycloaddition reactions of alkenes or alkynes and nitroalkanes substituted with O-alkyloxime groups convertible to various functional groups. Tetrahedron Letters, 61, 152213. https://doi.org/10.1016/j.tetlet.2020.152213

Vidal-Limon, A., Suárez, P. C. G., Arellano-García, E., Contreras, O. E., & Aguila, S. A. (2018). Enhanced Degradation of Pesticide Dichlorophen by Laccase Immobilized on Nanoporous Materials: A Cytotoxic and Molecular Simulation Investigation. Bioconjugate Chemistry, 29, 1073-1080. https://doi.org/10.1021/acs.bioconjchem.7b00739

Xiao, X., Shiqiao, G., Dongmei, Z., Shaohua, N., Lei, J., & Zhuocheng, O. (2019). Mechanical behavior of liquid nitrile rubber-modified epoxy resin: Experiments, constitutive model and application. International Journal of Mechanical Sciences, 151, 46-60. https://doi.org/10.1016/j.ijmecsci.2018.11.003

Zhan, W., Ji, L., Ge, Z., Wang, X., & Li, R. (2018). A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. Tetrahedron, 74, 1527-1532. https://doi.org/10.1016/j.tet.2018.02.017

Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657. https://doi.org/10.1016/j.cej.2020.125657

Zhang, J., Liu, Z. Z., & Zheng, L. (2013). Improvement of nitrilase production from a newly isolated Alcaligenes faecalis mutant for biotransformation of iminodiacetonitrile to iminodiacetic acid. Journal of the Taiwan Institute of Chemical Engineers, 44, 169-176. https://doi.org/10.1016/j.jtice.2012.11.010

Zhou, H., Huang, X., Liang, Y., Li, Y., Xie, Q., Zhang, C., & You, S. (2020). Enhanced bioremediation of hydraulic fracturing flowback and produced water using an indigenous biosurfactant-producing bacteria Acinetobacter sp. Y2. Chemical Engineering Journal, 397, 125348. https://doi.org/10.1016/j.cej.2020.125348

Downloads

Published

25/06/2022

How to Cite

MITUISHI, M. P. .; MENEZES , L. H. S. de .; TAVARES , I. M. de C. .; FREITAS, J. de S. .; SOUZA-MOTTA, C. M. de .; BEZERRA, J. L.; COSTA, A. M. da .; UETANABARO, A. P. T.; FRANCO, M. .; OLIVEIRA, J. R. de . Potential of Aspergillus niger Tiegh 8285 in the bioremediation of water contaminated with benzonitrile. Research, Society and Development, [S. l.], v. 11, n. 8, p. e42711831078, 2022. DOI: 10.33448/rsd-v11i8.31078. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31078. Acesso em: 19 nov. 2024.

Issue

Section

Exact and Earth Sciences