Potencial de Aspergillus niger Tiegh 8285 na biorremediação de água contaminada com benzonitrila
DOI:
https://doi.org/10.33448/rsd-v11i8.31078Palavras-chave:
Biocatalise; Microrganismos; Otimização; Planejamento composto central.Resumo
Benzonitrila é um composto encontrado em pesticidas. O uso desses agrotóxicos pode causar contaminação ambiental, exigindo a busca de métodos não agressivos para eliminação desses resíduos. Neste estudo, fungos Aspergillus isolados de cacau foram investigados quanto ao seu potencial de biorremediação de benzonitrila. Os fungos foram cultivados em meio sólido suplementado com nitrila e glicose (a), nitrila (b) e glicose (c). Variáveis independentes: tempo, inóculo e nitrila foram otimizados usando um planejamento Composto Central para determinar o melhor crescimento microbiano e biomassa úmida (variável dependente) como resposta no processo de biorremediação. A. niger Tiegh 8285 apresentou boa adaptação, principalmente na situação b em 5 dias, 3 inóculo micelial e 54 μL de benzonitrila para crescimento microbiano, resultando em 1,83 ± 0,03 g de biomassa úmida, confirmando a eficiência do modelo matemático selecionado. A. niger Tiegh 8285 provou ser um promissor agente de biorremediação para benzonitrila.
Referências
Aboyeji, O. O., Oloke, J. K., Arinkoola, A. O., Oke, M. A., & Ishola, M. M. (2020). Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger. Scientific. African, 10, e00554. https://doi.org/10.1016/j.sciaf.2020.e00554
Agarwal, A., & Nigam, V. K. (2017). Enhanced Production of Nitrilase from Streptomyces sp. MTCC 7546 by Response Surface Method. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87, 603-609. https://doi.org/10.1007/s40011-015-0638-2
An, X., Cheng, Y., Huang, M., Sun, Y., Wang, H., Chen, X., Wang, J., Li, D., & Li, C. (2018) Treating organic cyanide-containing groundwater by immobilization of a nitrile-degrading bacterium with a biofilm-forming bacterium using fluidized bed reactors. Environmental Pollution, 237, 908-916. https://doi.org/10.1016/j.envpol.2018.01.087
An, X., Cheng, Y., Miao, L., Chen, X., Zang, H., & Li, C. (2020). Characterization and genome functional analysis of an efficient nitrile degrading bacterium, Rhodococcus rhodochrous BX2, to lay the foundation for potential bioaugmentation for remediation of nitrile-contaminated environments. Journal of Hazardous Materials, 389, 121906. https://doi.org/10.1016/j.jhazmat.2019.121906
Bezerra, M. A., Lemos, V. A., Novaes, C. G., de Jesus, R. M., Souza Filho, H. R., Araújo, S. A., & Alves, J. P. S. (2020). Application of mixture design in analytical chemistry. Microchemical Journal, 152, 104336. https://doi.org/10.1016/j.microc.2019.104336
Catania, V., Lopresti, F., Cappello, S., Scaffaro, R., & Quatrini, P. (2020). Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water. New Biotechnology, 58, 25-31. https://doi.org/10.1016/j.nbt.2020.04.001
Chaudhary, D. K., & Kim, J. (2019). New insights into bioremediation strategies for oil-contaminated soil in cold environments. International Biodeterioration & Biodegradation, 142, 58-72. https://doi.org/10.1016/j.ibiod.2019.05.001
Chmura, A., Shapovalova, A. A., van Pelt, S., van Rantwijk, F., Tourova, T. P., Muyzer, G., & Sorokin, D. Y. (2008). Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils. Applied Microbiology and Biotechnology, 81, 371–378. https://doi.org./10.1007/s00253-008-1685-x
Coady, T. M., Coffey, L. V., O’Reilly, C., Owens, E. B., & Lennon, C. M. (2013). A high throughput screening strategy for the assessment of nitrile-hydrolyzing activity towards the production of enantiopure β-hydroxy acids. Journal of Molecular Catalysis B: Enzymatic, 97, 150-155. https://doi.org/10.1016/j.molcatb.2013.08.001
Dao, A. T. N., Vonck, J., Janssens, T. K. S., Dang, H. T. C., Brouwer, A., & de Boer, T. E. (2019). Screening white-rot fungi for bioremediation potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Industrial Crops and Products, 128, 153-161. https://doi.org/10.1016/j.indcrop.2018.10.059
De Oliveira, J. R., Mizuno, C. M., Seleghim, M. H. R., Javaroti, D. C. D., Rezende, M. O. O., Landgraf, M. D., Sette, L. D., & Porto, A. L. M. (2013). Biotransformation of Phenylacetonitrile to 2-Hydroxyphenylacetic Acid by Marine Fungi. Marine Biotechnology, 15, 97-103. https://doi-/10.1007/s10126-012-9464-1
De Oliveira, J. R., Seleghim, M. H. R., & Porto, A. L. M. (2014). Biotransformation of Methylphenylacetonitriles by Brazilian Marine Fungal Strain Aspergillus sydowii CBMAI 934: Eco-friendly Reactions. Marine Biotechnology, 16, 156–160. https://doi.org/10.1007/s10126-013-9534- z
Dos Santos, T. C., Reis, N. S., Silva, T. P., Machado, F. P. P., Bonomo, R. C. F., & Franco, M. (2016). Prickly Palm Cactus Husk as a Raw Material for Production of Ligninolytic Enzymes by Aspergillus niger. Food Science and Biotechnology, 25, 205-211. https://doi.org/10.1007/s10068-016-0031-9
Ferreira, S. L. C., Bruns, R. E., da Silva, E. G. P., dos Santos, W. N. L., Quintella, C. M., David, J. M., de Andrade, J. B., Breitkreitz, M. C., Jardim, I. C. S. F., & Barros Neto, B. (2020). Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatography A, 1158, 2-14. https://doi.org/10.1016/j.chroma.2007.03.051
Fu, D., Yan, Y., Yang, X., Rene, E. R., & Singh, R. P. (2020). Bioremediation of contaminated river sediment and overlying water using biologically activated beads: A case study from Shedu river, China. Biocatalysis and Agricultural Biotechnology, 23, 101492. https://doi.org/10.1016/j.bcab.2019.101492
Gowri, A. K., Karunakaran, M. J., Muthunarayanan, V., Ravindran, B., Nguyen-Tri, P., Ngo, H. H., Bui, X. T., Nguyen, X. H., Nguyen, D. D., Chang, S. W., & Chandran, T. (2020). Evaluation of bioremediation competence of indigenous bacterial strains isolated from fabric dyeing effluent. Bioresource Technology Reports, 11, 100536. https://doi.org/10.1016/j.biteb.2020.100536
Graham, D., Pereira, R., Barfield, D., & Cowan, D. (2020). Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp. Enzyme and Microbial Technology, 26, 368-373. https://doi.org/10.1016/S0141-0229(99)00169-6
Heidari, A., & Asoodeh, A. (2019). A novel nitrile-degrading enzyme (nitrile hydratase) from Ralstonia sp. ZA96 isolated from oil contaminated soils. Biocatalysis and Agricultural Biotechnology, 21, 101285. https://doi.org/10.1016/j.bcab.2019.101285
Hubadillah, S., Othmam, M. H. D., Gani, P., Sunar, N. M., Tai, Z. S., Koo, K. N., Pauzan, M. A. B., Ismail, N. J., & Zahari, S. M. S. N. S. (2020). Integrated green membrane distillation-microalgae bioremediation for arsenic removal from Pengorak River Kuantan, Malaysia. Chemical Engineering Process, 153, 107996. https://doi.org/10.1016/j.cep.2020.107996
Khan, Y. M., Munir, H., & Anwar, Z. (2019). Optimization of process variables for enhanced production of urease by indigenous Aspergillus niger strains through response surface methodology. Biocatalysis and Agricultural Biotechnology, 20, 101202. https://doi.org/10.1016/j.bcab.2019.101202
Lai, A. N., Wang, Z., Yin, Q., Zhu, R. Y., Hu, P. C., Zheng, J. W., & Zhou, S. F. (2020). Comb-shaped fluorene-based poly (arylene ether sulfone nitrile) as anion exchange membrane. International Journal of Hydrogen Energy, 45, 11148-11157. https://doi.org/10.1016/j.ijhydene.2020.02.057
Li, Q., Li, J., Jiang, L., Sun, Y., Luo, C., & Zhang, G. (2020). Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. Journal of Hazardous Materials, 403, 123895. https://doi.org/10.1016/j.jhazmat.2020.123895
Liu, C., Yuan, K., Chen, R. P., Chen, M. J., & Yu, L. (2017). Biodegradation kinetics of nitriles with easily degradable substrate by Klebsiella oxytoca GS-4-08. International Biodeterioration & Biodegradation, 118, 95-101. https://doi.org/10.1016/j.ibiod.2017.01.028
Lu, H., Yuan, Y., Campbell, D. E., Qin, P., & Cui, L. (2014). Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecological Engineering, 69, 244-254. https://doi.org/10.1016/j.ecoleng.2014.04.024
Marques, G. L., Reis, N. S., Silva, T. P., Ferreira, M. L. O., Oliveira, E. A., de Oliveira, J. R., & Franco, M. (2018). Production and Characterisation of Xylanase and Endoglucanases Produced by Penicillium roqueforti ATCC 10110 Through the Solid-State Fermentation of Rice Husk Residue. Wast and Biomass Valorization, 9, 2061-2069. https://doi.org/10.1007/s12649-017-9994-x
Mehta, A., & Basu, S. (2017). Controlled photocatalytic hydrolysis of nitriles to amides by mesoporous MnO2 nanoparticles fabricated by mixed surfactant mediated approach. Journal of Photochemistry and Photobiology A: Chemistry, 343, 1-6. https://doi.org/10.1016/j.jphotochem.2017.04.013
Neoh, C. H., Lam, C. Y., Ghani, S. M., Ware, I., Sarip, S. H. M., & Ibrahim, Z. (2016). Bioremediation of high-strength agricultural wastewater using Ochrobactrum sp. strain SZ1. 3 Biotech, 6, 1-9. https://doi.org./10.1007/s13205-016-0455-1
Papadaki, E., Kontogiannopoulos, K. N., Assimopoulou, A. N., & Mantzouridou, F. T. (2020). Feasibility of multi-hydrolytic enzymes production from optimized grape pomace residues and wheat bran mixture using Aspergillus niger in an integrated citric acid enzymes production process. Bioresource Technology, 309, 123317. https://doi.org/10.1016/j.biortech.2020.123317
Pei, X., Wang, J., Guo, W., Miao, J., & Wang, A. (2017). Efficient biodegradation of dihalogenated benzonitrile herbicides by recombinant Escherichia coli harboring nitrile hydratase-amidase pathway. Biochemical Engineering journal, 125, 88-96. https://doi-org/10.1016/j.bej.2017.05.021
Putri, D. N., Khootama, A., Perdani, M. S., Utami, T. S., & Hermansyah, H. (2020). Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Reports, 6, 331-335. https://doi.org/10.1016/j.egyr.2019.08.064
Quintella, C. M., Mata, A. M. T., & Lima, L. C. P. (2019). Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. Journal of Environmental Management, 241, 156-166. https://doi.org/10.1016/j.jenvman.2019.04.019
Salami, F., Habibi, Z., Yousefi, M., & Mohammadi, M. (2018). Covalent immobilization of laccase by one pot three component reaction and its application in the decolorization of textile dyes. International Journal of Biological Macromolecules, 120, 144-151. https://doi.org/10.1016/j.ijbiomac.2018.08.077
Saldanha-Ruiz, S., Soler-Martína, C., & Llhorens, J. (2012). Role of CYP2E1-mediated metabolism in the acute and vestibular toxicities of nineteen nitriles in the mouse. Toxicology Letters, 208, 125-132. https://doi.org/10.1016/j.toxlet.2011.10.016
Santos, E. C., de Menezes, L. H. S., Santos, C. L., Santana, P. V. B., Soares, G. A., Tavares, I. M. C., Freitas, J. S., Mota, C. M. S., Bezerra, J. L., da Costa, A. M., Uetanabaro, A. P. T., Porto, A. L. M., Franco, M., & de Oliveira, J. R. (2021). High-throughput screening for distinguishing nitrilases from nitrile hydratases in Aspergillus and application of a Box–Behnken design for the optimization of nitrilase. Biotechnology and Applied Biochemistry, 1-10. https://doi.org/10.1002/bab.2269
Sattar, H., Bibi, Z., Kamran, A., Aman, A., & Qader, S. A. A. (2019). Degradation of complex casein polymer: Production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36. Biocatalysis and Agricultural Biotechnology, 21, 101256. https://doi.org/10.1016/j.bcab.2019.101256
Serra, I., Capusoni, C., Molinari, F., Musso, L., Pellegrino, L., & Compagno, C. (2019). Marine Microorganisms for Biocatalysis: Selective Hydrolysis of Nitriles with a Salt-Resistant Strain of Meyerozyma guilliermondii. Marine Biotechnology, 21, 229 239. https://doi.org/10.1007/s10126-019-09875-0
Shah, A., & Shah, M. (2020). Characterisation and bioremediation of wastewater: A review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundwater of Sustainable Development, 11, 100383. https://doi.org/10.1016/j.gsd.2020.100383
Sicuro, B., Castelar, B., Mugetti, D., Pastorino, P., Chiarandon, A., Menconi, V., Galloni, M., & Prearo, M. (2020). Bioremediation with freshwater bivalves: A sustainable approach to reducing the environmental impact of inland trout farms. Journal of Environmental Management, 276, 111327. https://doi.org/10.1016/j.jenvman.2020.111327
Umemoto, N., Imayoshi, A., & Tsubaki, K. (2020). Nitrile oxide cycloaddition reactions of alkenes or alkynes and nitroalkanes substituted with O-alkyloxime groups convertible to various functional groups. Tetrahedron Letters, 61, 152213. https://doi.org/10.1016/j.tetlet.2020.152213
Vidal-Limon, A., Suárez, P. C. G., Arellano-García, E., Contreras, O. E., & Aguila, S. A. (2018). Enhanced Degradation of Pesticide Dichlorophen by Laccase Immobilized on Nanoporous Materials: A Cytotoxic and Molecular Simulation Investigation. Bioconjugate Chemistry, 29, 1073-1080. https://doi.org/10.1021/acs.bioconjchem.7b00739
Xiao, X., Shiqiao, G., Dongmei, Z., Shaohua, N., Lei, J., & Zhuocheng, O. (2019). Mechanical behavior of liquid nitrile rubber-modified epoxy resin: Experiments, constitutive model and application. International Journal of Mechanical Sciences, 151, 46-60. https://doi.org/10.1016/j.ijmecsci.2018.11.003
Zhan, W., Ji, L., Ge, Z., Wang, X., & Li, R. (2018). A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. Tetrahedron, 74, 1527-1532. https://doi.org/10.1016/j.tet.2018.02.017
Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657. https://doi.org/10.1016/j.cej.2020.125657
Zhang, J., Liu, Z. Z., & Zheng, L. (2013). Improvement of nitrilase production from a newly isolated Alcaligenes faecalis mutant for biotransformation of iminodiacetonitrile to iminodiacetic acid. Journal of the Taiwan Institute of Chemical Engineers, 44, 169-176. https://doi.org/10.1016/j.jtice.2012.11.010
Zhou, H., Huang, X., Liang, Y., Li, Y., Xie, Q., Zhang, C., & You, S. (2020). Enhanced bioremediation of hydraulic fracturing flowback and produced water using an indigenous biosurfactant-producing bacteria Acinetobacter sp. Y2. Chemical Engineering Journal, 397, 125348. https://doi.org/10.1016/j.cej.2020.125348
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Mariana Perin Mituishi; Luiz Henrique Sales de Menezes ; Iasnaia Maria de Carvalho Tavares ; Janaina de Silva Freitas; Cristina Maria de Souza-Motta; José Luiz Bezerra; Andréa Miura da Costa; Ana Paula Trovatti Uetanabaro; Marcelo Franco; Julieta Rangel de Oliveira

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.