Pumpkin seed proteins and the multifunctional properties of their hydrolysates: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.31161

Keywords:

Vegetable protein; Technical-functional properties; Biological properties; Hydrolyzed; Peptides.

Abstract

Pumpkin seeds are most often discarded or intended for animal feed, despite being a promising source of protein. Several studies have demonstrated the technical-functional potential of different vegetable proteins used in food processing as ingredients to improve foaming, emulsification, and gelling properties. However, the low water solubility of pumpkin seed proteins makes their industrial application in several products difficult. To overcome this limitation, the hydrolysis of these proteins appears as a promising strategy to obtain compounds with better technical-functional properties compared to native proteins. In addition, the peptides obtained may exert potential biological properties, such as: antidiabetic, antioxidant, antihypertensive, anti-inflammatory, and antimicrobial activities. With this literature review, studies on pumpkin seed proteins, their composition and technical-functional properties were compiled. The properties of hydrolysates and bioactive peptides obtained through the enzymatic hydrolysis of pumpkin seed proteins were emphasized, to spread knowledge about the sustainable use of a protein source with high industrial potential. The works showed that enzymatic hydrolysis makes it possible to obtain bioactive peptides with relevant biological properties. However, studies should also be conducted to understand the behavior of bioactive peptides in different food matrices and in vivo systems, to recognize their bioactivities presented in vitro.

References

Aguilar, J. G. dos S., & Sato, H. H. (2018). Microbial proteases: Protuction and application in obtaining protein hydrolysates. Food Reshearch International, 103, 253-262.

Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and bioproducts processing, 98, 244-256.

Aiking, H. (2011). Future protein supply. Trends in Food Science & Technology, 22, 112-120.

Alfawaz, M. (2004). Chemical Composition and oil characteristics of pumpkin (Cucurbita maxima) seed kernels. Food Science Agricultural and Research, 129, 5-18.

Amin, M. Z., Islam, T., Uddin, M.R., Uddin, M. J., Rahman, M. M., & Satter, M. A. (2019). Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon, 5(9), e02462.

Amo, I., Eleyinmi, A., Ilelaboye, N., & Akoja, S. (2004). Characterization of oil extracted from gourd (Cucurbita maxima) seed. Journal of Food, Agriculture and Environment, 2, 38-39.

Angelis, E. de, Pilolli, R., Bavaro, S. L., & Monaci, L. (2017). Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity. Food Function, 8(4), 1599-1610.

Asiegbu., J. E. (1987). Some biochemical evaluation of fluted pumpkin seed. Food Science & Technology, 40(2), 151-155.

Banerjee, J., Singh, R., Vijayaraghavan, R., Macfarlane, D. Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225, 10-22.

Blagrove, R., & Lilley, G. (1980). Characterisation of cucurbitin from various species of the Cucurbitaceae. European Journal of Biochemistry, 103, 577-584.

Blinkovsky, A. M., Byun, T., Brown, K. M., &Golightly, E. J. (1999). Purification, Characterization, and Heterologous Expression in Fusarium venenatum of a Novel Serine Carboxypeptidase from Aspergillus oryzae. Applied And Environmental Microbiology, 65(8), 3298–3303.

Bučko, S., Katona, J., Popović, L., Petrović, L., & Milinković, L. (2016). Influence of enzymatic hydrolysis on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. Food Hydrocolloids, 60, 271–278.

Bučko, S., Katona, J., Popović, L., Vaštag, Z., Petrović, L., &Vučinić–Vasić, M. (2015). Investigation on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate, LWT - Food Science and Technology, 64(2), 609-615.

Cabanos, C., Matsuoka, Y., & Maruyama, N. (2021). Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides, 143, 170598.

Carullo, D., Donsì, F., & Ferrari, G. (2020). Influence of high-pressure homogenization on structural properties and enzymatic hydrolysis of milk proteins. LWT - Food Science and Technology, 130, Article e109657.

Carullo, D., Barbosa-Cánovas, G. V., & Ferrari, G. (2021). Changes of structural and techno-functional properties of high hydrostatic pressure (HHP) treated whey protein isolate over refrigerated storage. LWT - Food Science and Technology, 137.

Castro, H. F. de, Mendes, A. A., Santos, J. C. dos, & Aguiar, C. L. de. (2004). Modificação de óleos e gorduras por biotransformação, Modification of oils and fats by biotransformation. Quimica Nova, 27(1), 146-156.

Chourasia, R., Phukon, L. C., Singh, S. P., Rai, A. K., & Sahoo D. (2020). Chapter 15 - Role of enzymatic bioprocesses for the production of functional food and nutraceuticals, Editor(s): S. P. Singh, Pandey, A., Singhania, R. R., Larroche, C., & Li, Z. Biomass, Biofuels, Biochemicals, Elsevier, 309-334.

Colman, P., Suzuki, E., & Van D. A. (1980). The structure of cucurbitin: subunit symmetry and organization in situ. European Journal of Biochemistry, 103, 585-588.

Devi, N.M., Prasad, R. V., & Sagarika, N. (2018). A review on health benefits and nutritional composition of pumpkin seeds. International Journal of Chemical Studies, 6(3), 1154-1157.

Dong, X., Wang, J., & Raghavan. V. (2021). Impact of microwave processing on the secondary structure, in-vitro protein digestibility and allergenicity of shrimp (Litopenaeus vannamei) proteins. Food Chemistry, 337, 127811.

Santos, L. dos, & Koblitz, M. (2008). Proteases. In: Koblitz, M. Bioquí¬mica de alimentos. Rio de Janeiro: Guanabara Koogan, 242.

Du, H., Zhang, J., Wang, S., Manyande, A., & Wang, J. (2022). Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. LWT - Food Science and Technology, 155, 112952.

Du, Y., Jiang, Y., Zhu, X., Xiong, H., Shi, S., Hu, J., Peng, H., Zhou, Q., & Sun, W. (2012). Physicochemical and functional properties of the protein isolate and major fractions prepared from Akebia trifoliata var. australis seed, Food Chemistry, 133(3), 923-929.

Ertugrul, U., Namli, S., Tas, O., Kocadagli, T., Gokmen, V., Sumnu, S. G., & Oztop, M. G. (2021). Pea protein properties are altered following glycation by microwave heating. LWT-Food Science and Technology, 150, 111939.

Fathi, P., Moosavi-Nasab, M., Mirzapour-Kouhdasht, A., & Khalesi, M. (2021). Generation of hydrolysates from rice bran proteins using a combined ultrasonication-Alcalase hydrolysis treatment. Food Bioscience, 42, 101110.

Fava, F., Totaro, G., Diels, L., Reis, M., Duarte, J., Carioca, O. B., Poggi-Varaldo, H. M., & Ferreira, B. S. (2015). Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnology, 32(1), 100-108.

Flores-Jiménez, N. T., Ulloa, J. A., Silvas J. E. U., Ramírez, J. C. R., Ulloa, P. R., Rosales, P. U. B., Carrillo, Y. S., & Leyva, R, G. (2019). Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Research International, 121, 947-956.

Fruhwirth, G., & Hermetter, A. (2007). Seeds and oil of the styrian oil pumpkin: components and biological activities. European Journal of Lipid Science and Technology, 109, 1128-1140.

Grande, S. C.; & Cren, É. C. (2016). Demanda de proteínas vegetais: potencialidades e o diferencial dos farelos de Macaúba (REVISÃO). The Journal of Engineering and Exact Sciences, 2(3), 190–214, 26.

Guan, H., Diao, X., Jiang, F., Han, J. & Kong, B. (2018). The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry, 245, 89-96.

Guo, Z., Huang, Z., Guo, Y., Li, B., Yu, W., Zhou, L., Jiang, L., Teng, F., & Wang, Z. (2021). Effects of high-pressure homogenization on structural and emulsifying properties of thermally soluble aggregated kidney bean (Phaseolus vulgaris L.) proteins. Food Hydrocolloids, 119, 106835.

Huang, K., Shi, J., Li, M., Sun, R., Guan, W., Cao, H., Guan, X., & Zhang, Y. (2022). Intervention of microwave irradiation on structure and quality characteristics of quinoa protein aggregates. Food Hydrocolloids, 130, 107677.

Ibrahim, H. R., Ahmed, A. S., & Miyata, T. (2017). Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. Journal of Advanced Research, 8(1), 63–71.

Karami, Z.; & Akbari-adergani, B. (2019). Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2), 535–547.

Korhonen, H., & Pihlanto A. (2003). Food-derived bioactive peptides—opportunities for designing future foods. Current Pharmaceutical Design, 9(16), 1297–1308.

Lazos, E. (1986). Nutritional, fatty acid, and oil characteristics of pumpkin and melon seeds. Journal of Food Science, 51(5), 1382-1383.

Leite Júnior, B. R. C., Tribst, A. A. L., Ribeiro, L. R. & Cristianini, M. (2019). High pressure processing impacts on the hydrolytic profile of milk coagulants. Food Bioscience, 31, 100449.

Leite Júnior, B. R. C., Tribst, A. A. L. & Cristianini, M. (2015). Influence of high pressure homogenization on commercial protease from Rhizomucor miehei: Effects on proteolytic and milk-clotting activities. LWT-Food Science and Technology, 63(1), 739-744.

Li-Chan, E. C. Y. (2015). Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1(1), 28–37.

Liu, D., Zhang, L., Wang, Y., Li, Z., Wang, Z., & Han, J. (2022). Effect of high hydrostatic pressure on solubility and conformation changes of soybean protein isolate glycated with flaxseed gum. Food Chemistry, 333, 127530.

Liu, N., Lin, P., Zhang, K., Yao, X., Li, D., Yang, L., & Zhao, M. (2022). Combined effects of limited enzymatic hydrolysis and high hydrostatic pressure on the structural and emulsifying properties of rice proteins. Innovative Food Science & Emerging Technologies, 77, 102975.

Lo, B., Kasapis, S., & Farahnaky, A. (2022). Effect of low frequency ultrasound on the functional characteristics of isolated lupin protein. Food Hydrocolloids, 124, Part B, 107345.

Magalhães, I. S., Guimarães, A. D. B., Tribst, A. A. L., Oliveira, E. B., & Leite Junior, B. R. C. (2022). Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates. Food Research International, 157, 111310.

Marcone, M. (1999). Biochemical and biophysical properties of plant storage proteins: a current understanding with emphasis on 11S seed globulins. Food Research International, 32, 79-92.

Marcone, M., Kakuda, Y., & Yada, R. (1998). Salt–soluble seed globulins of various dicotyledonous and monocotyledonous plants–I. Isolation/purification and characterization. Food Chemistry, 62, 27-47.

Markland, F. S., & Smith, E. L. (1971). 16 Subtilisins: Primary Structure, Chemical and Physical Properties, Editor(s): Paul D. Boyer. The Enzymes, Academic Press, 3, 561-608.

Martinez-Villaluenga, C., Peñas, E.; & Frias, J. (2017). Bioactive Peptides in Fermented Foods. In: Fermented Foods in Health and Disease Prevention. [s.l.] Elsevier, 23–47.

McCarthy, A., O'Callaghan, Y., & O'Brien, N. (2013). Protein Hydrolysates from Agricultural Crops—Bioactivity and Potential for Functional Food Development. Agriculture, 3(1), 112–130.

Mejia, E. de, & Lumen, B. de. (2006). Soybean bioactive peptides: a new horizon in preventing chronic diseases, sexuality. Reproduction Menopause, 4(2), 91-95.

Melchior, S., Moretton, M., Calligaris, S., Manzocco, L., & Nicoli, M. C. (2022). High pressure homogenization shapes the techno-functionalities and digestibility of pea proteins. Food and Bioproducts Processing, 131, 77-85.

Mitić, M., Pavlović, A., Tošić, S., Mašković P., Kostić, D., Mitić, S., Kocić, G. & Maškovć, J. (2018). Optimization of simultaneous determination of metals in commercial pumpkin seed oils using inductively coupled atomic emission spectrometry. Microchemical Journal, 141, 197-203.

Moure, A., Sineiro, J., Domínguez, H., & Parajó J. C. (2006). Functionality of oilseed protein products: a review. Food Research International. 39(9), 945–963.

Muhamyankaka, V., Shoemaker, C.F., Nalwoga, M., & Zhang, X.M. (2013). Physicochemical properties of hydrolysates from enzymatic hydrolysis of pumpkin (Cucurbita moschata) protein meal. International Food Research Journal, 20(5), 2227-2240.

Muri, E. M. F. (2014). Proteases virais: Importantes alvos terapêuticos de compostos peptideomiméticos. Quimica Nova, 37(2), 308-316.

Norfezah, M.N., Hardacre, A. & Brennan, C.S. (2011). Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Science and Technology International, 17(4), 367-373.

Nourmohammadi, E., Mahoonak, A.S., Alami, M., & Ghorbani. M. (2017). Amino acid composition and antioxidative properties of hydrolysed pumpkin (Cucurbita pepo L.) oil cake protein. International Journal of Food Properties. 20(12), 3244-3255.

Omura, M. H., Oliveira, A. P. H., Soares, L. S., Coimbra, J. S. R., Barros, F. A. R., Vidigal, M. C. T. R., Baracat-Pereira, M. C., & Oliveira, E. B. (2021). Effects of protein concentration during ultrasonic processing on physicochemical properties and techno-functionality of plant food proteins. Food Hydrocolloids, 113, 106457.

Popović, L. M., Peričin, D. M., Vaštag, Ž. G. & Popović, Senka. (2013). Optimization of Transglutaminase Cross-linking of Pumpkin Oil Cake Globulin; Improvement of the Solubility and Gelation Properties. Food and Bioprocess Technology, 6, 1105-1111.

Posorske, L. H. (1984). Industrial-scale application of enzymes to the fats and oil industry. Journal of the American Oil Chemists’ Society, 61(11), 1758-1760.

Rahman, M. M., Juahir, H., Islam, M. H., Khandaker, M. M., Ariff, T. M., &Norsani W. M. (2019). Prophetic vegetable Pumpkin, Its impressive health benefits and total analysis. Bioscience Research, 16(4), 3987-3999.

Rezig, L., Moncef, C., Kamel, M., & Salem, H. (2012). Chemical composition and profile characterization of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products, 37(1), 82-87.

Rezig, L., Chibani, F., Chouaibi, M., Dalgalarrondo, M.l., Hessini, K., Guéguen, J., & Hamdi, S. (2013). Pumpkin (Cucurbita maxima) seed proteins: sequential extraction processing and fraction characterization. Journal of Agricultural and Food Chemistry, 61(32), 7715-7721.

Sanjukta, S., & Rai, K. A. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology, 50, 1-10.

Sanjukta, S., Rai, A. K., Muhammed, A., Jeyaram, K., & Talukdar, N. C. (2015). Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. Journal of Functional Foods, 14, 650-658.

Sarmadi, B. H.; & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949–1956.

Sha, L., & Xiong, Y. L. (2022). Comparative structural and emulsifying properties of ultrasound-treated pea (Pisum sativum L.) protein isolate and the legumin and vicilin fractions. Food Research International, 156, 111179.

Shahidi, F.; & Zhong, Y. (2008). Bioactive Peptides. Journal of AOAC International, 91 (21), 14–31.

Singh, B.P., Vij, S., & Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171-179.

Soares, A. S., Augusto, P. E. D., Leite Júnior, B. R. C., Nogueira, C. A., Vieira, É. N. R., Barros, F. A. R., Stringheta, P.C., & Ramos, A. M. (2019). Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. LWT - Food Science and Technology, 107, 164-170.

Soares, A. S., Leite Júnior, B. R. C., Tribst, A. A. L., Augusto, P. E. D., & Ramos, A. M. (2020). Effect of ultrasound on goat cream hydrolysis by lipase: Evaluation on enzyme, substrate and assisted reaction. LWT - Food Science and Technology, 130, 109636.

Sumantha, A., Larroche, C., & Pandey, A. (2006). Microbiology and industrial biotechnology of food-grade proteases: A perspective. Food Technology and Biotechnolog, 44(2), 211-220.

Tian, S., Du, K., Yan, F., & Li., Y. (2022). Microwave-assisted enzymatic hydrolysis of wheat germ albumin to prepare polypeptides and influence on physical and chemical properties. Food Chemistry, 374, 131707.

Tovar-Pérez, E.G., Lugo-Radillo, A., & Aguilera-Aguirre, S. (2019). Amaranth grain as a potential source of biologically active peptides: A review of their identification, production, bioactivity, and characterization. Food Reviews International, 35, 221-245.

Vale, C. P. do, Loquete, F. C. C., Zago, M. G., Chiella, P. V., & Bernardi, D. M. (2019). Composição e propriedades da semente de Abóbora. Fag Journal of Health (Fjh), 1(4), 79–90.

Vaštag, Z.; Popović L.; & Popović S. (2014). Bioactivity evaluation of cucurbitin derived enzymatic hydrolysates. International journal of agricultural and biosystems engineering, 8, 445 – 448.

Vaštag, Ž., Popović, L., Popović, S., Krimer, V., & Peričin, D. (2011). Production of enzymatic hydrolysates with antioxidant and angiotensin–I converting enzyme inhibitory activity from pumpkin oil cake protein isolate. Food Chemistry, 124(4), 1316-1321.

Venuste, M., Zhang, X., Shoemaker, C.F., Karangwa, E., Abbas, S., & Kamdem, P.E. (2013). Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Food and Function, 4(5), 811–820.

Wang, D., Yan, L., Ma, X., Wang, W., Zou, M., Zhong, J., Ding, T., Ye, X., & Liu, D. (2018). Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. International Journal of Biological Macromolecules, 119, 453-461.

Yang, C., Wang, B., Wang, J., Xia, S., & Wu, Y. (22019), Effect of pyrogallic acid (1,2,3-benzenetriol) polyphenol-protein covalent conjugation reaction degree on structure and antioxidant properties of pumpkin (Cucurbita sp.) seed protein isolate. LWT-Food Science and Technology, 109, 443–9.

Zhang, A., Wang, L., Song, T., Yu, H., Wang, X., & Zhao, X. (2022). Effects of high pressure homogenization on the structural and emulsifying properties of a vegetable protein: Cyperus esculentus L. LWT-Food Science and Technology, 153, 112542.

Zhou, C., Hu, J., Yu, X., Yagoub, A. E. A., Zhang, Y., Ma, H., Gao, X., Out, P. N. Y. (2017). Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT-Food Science and Technology, 77, 488-496.

Published

26/06/2022

How to Cite

PACHECO, A. F. C. .; PEREIRA, G. Z. .; RODRIGUES, A. C. de S. .; CUNHA , J. S. .; PACHECO, F. C. .; PAIVA, P. H. C. .; TRIBST, A. A. L. .; LEITE JUNIOR, B. R. de C. . Pumpkin seed proteins and the multifunctional properties of their hydrolysates: a review. Research, Society and Development, [S. l.], v. 11, n. 8, p. e47211831161, 2022. DOI: 10.33448/rsd-v11i8.31161. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31161. Acesso em: 23 apr. 2024.

Issue

Section

Review Article