Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT
DOI:
https://doi.org/10.33448/rsd-v11i8.31258Keywords:
ADHD assisted diagnosis; Computer-aided diagnosis; Machine learning; Nuclear medicine; SPECT.Abstract
ADHD (attention deficit hyperactivity disorder) is a neurodevelopmental disorder characterized by harmful levels of inattention, disorganization, and/or hyperactivity-impulsivity. In childhood, these symptoms often overlap with those of other disorders, and they tend to persist into adulthood, interfering with relationships and academic and work life. Diagnosis, traditionally made by assessing the patient, i.e., testing and listening to relatives and teachers, has already been aided by neuroimaging. However, the visual analysis of such images to make a psychiatric diagnosis is a complex and sometimes time-consuming task. For this reason, computer-aided diagnostic tools have increasingly evolved that, when combined with machine learning (ML) techniques, can accelerate, facilitate, and maximize the accuracy of diagnoses. Nevertheless, research evaluating ML models for classifying ADHD considering severity using images of the brain SPECT (Single Photon Emission Computed Tomography) is still very sparse. For this reason, this article aims to evaluate the performance of the ML methods: k-NN (k-Nearest Neighbors), Naive Bayes, Decision Tree, MLP (Multilayer Perceptron) and SVM (Support Vector Machine) in the classification of ADHD. The main goal of this analysis is to check whether the subjects have the disorder or not, and to classify the severity of those who have it using SPECT images. A database was created from SPECT images and diagnostic reports. After pre-processing these data, the best hyperparameters for the ML methods were searched, trained/tested and finally statistically compared. The best results were obtained with SVM and k-NN, with 98% accuracy. Although ADHD diagnosis by neuroimaging is not yet a standard clinical procedure, we argue that this study can contribute to ADHD diagnosis research and support methods for the development of CAD (computer-aided diagnosis) systems.
References
Abdi, H., Williams, L. J., Beaton, D., Posamentier, M. T., Harris, T. S., Krishnand, A., Devous, M. D. (2012, January 01). Analysis of regional cerebral blood flow data to discriminate among Alzheimer's disease, frontotemporal dementia, and elderly controls: a multi-block barycentric discriminant analysis (MUBADA) methodology. Journal of Alzheimer's Disease: JAD, 31(3), 189-201.
Amen, D. (2012). Daniel Amen, MD: the impact of brain imaging on psychiatry and treatment for improving brain health and function. Interview by Karen Burnett. Alternative Therapies in Health and Medicine, 18(2), 52–58.
Amen, D., Sarabi, M., Willeumier, K., Taylor, D., Raji, C., Meysami, S., Raghavendra, C. (2017). Functional SPECT neuroimaging using machine learning algorithms distinguishes autism spectrum disorder from healthy subjects. Syst Integr Neurosci, 3(3), 1-9.
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (5th ed.). Arlington, VA: American Psychiatric Association.
Biederman, J., Petty, C. R., Woodworth, K. Y., Lomedico, A., Hyder, L. L., Faraone, S. V. (2012). Adult outcome of attention-deficit/hyperactivity disorder: a controlled 16-year follow-up study. The Journal of Clinical Psychiatry, 73(7), 941-950.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY: Springer.
Cascianelli, S., Scialpi, M., Amici, S., Forini, N., Minestrini, M., Fravolini, M. L., Palumbo, B. (2017). Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases. Current Alzheimer research, 14(2), 198-207.
Castillo-Barnes, D., Martinez-Murcia, F. J., Ortiz, A., Salas-Gonzalez, D., RamÍrez, J., Górriz, J. M. (2020). Morphological Characterization of Functional Brain Imaging by Isosurface Analysis in Parkinson’s Disease. International Journal of Neural Systems, 30(9), p. 2050044.
Castillo-Barnes, D., Ramírez, J., Segovia, F., Martínez-Murcia, F. J., Salas-Gonzalez, D., Górriz, J. M. (2018, August 14). Robust Ensemble Classification Methodology for I123-Ioflupane SPECT Images and Multiple Heterogeneous Biomarkers in the Diagnosis of Parkinson's Disease. Frontiers in Neuroinformatics, 12, 53.
Cawley, G. C., Talbot, N. L. (2010). On over-fitting in model selection and subsequent selection bias in performance evaluation. The Journal of Machine Learning Research, 11, 2079-2107.
CDC. (2021a, July 15). Data and Statistics About ADHD. Retrieved from Centers for Disease Control and Prevention: https://www.cdc.gov/ncbddd/adhd/data.html
CDC. (2021b, July 15). What is ADHD? Retrieved from Center for Disease Control and Prevention: https://www.cdc.gov/ncbddd/adhd/facts.html
Chaves, R., Ramírez, J., Górriz, J., López, M., Salas-Gonzalez, D., Álvarez, I., Segovia, F. (2009, September 15). SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting. Neuroscience Letters, 461(3), 293-297.
Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1), 321–357.
Danckaerts, M., Sonuga-Barke, E. J., Banaschewski, T., Buitelaar, J., Döpfner, M., Hollis, C., Coghill, D. (2010, February). The quality of life of children with attention deficit/hyperactivity disorder: a systematic review. Eur Child Adolesc Psychiatry, 19(2), 83-105.
De Silva, S., Dayarathna, S., Ariyarathne, G., Meedeniya, D., Jayarathna, S. (2019). A Survey of Attention Deficit Hyperactivity Disorder Identification Using Psychophysiological Data. International Journal of Online and Biomedical Engineering (iJOE), 61-76.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res, 7, 1-30.
Deshpande, G., Wang, P., Rangaprakash, D., Wilamowski, B. (2015). Fully Connected Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity Disorder Classification from Functional Magnetic Resonance Imaging Data. IEEE Transactions on Cybernetics, 45(12), 2668-2679.
Du, J., Wang, L., Jie, B., Zhang, D. (2016, April 23). Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Computerized Medical Imaging and Graphics : the Official Journal of the Computerized Medical Imaging Society, 52, pp. 82-88.
Dubreuil-Vall, L., Ruffini, G., Camprodon, J. A. (2020, April 9). Deep Learning Convolutional Neural Networks Discriminate Adult ADHD From Healthy Individuals on the Basis of Event-Related Spectral EEG. Frontiers in neuroscience, 14, p. 251.
Faceli, K., Lorena, A. C., Gama, J., De Carvalho, A. C. (2021). Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina. Rio de Janeiro: LTC.
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AIMag, 17(3), 37.
Ferreira, L. K., Rondina, J. M., Kubo, R., Ono, C. R., Leite, C. C., Smid, J., Buchpiguel, C. A. (2017). Support vector machine-based classification of neuroimages in Alzheimer's disease: direct comparison of FDG-PET, rCBF-SPECT and MRI data acquired from the same individuals. Braz J Psychiatry, 40(2), 181-191.
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc, 32, 675-701.
García, S., Herrera, F. (2008). An extension on “Statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res, 9, 2677-2694.
Ghiassian, S., Greiner, R., Jin, P., Brown, M. R. (2016). Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism. Plos One, 11(12), e0166934.
Goldberg, M., Mena, I., Miller, B. (1999, July 1). Frontal and temporal lobe dysfunction in autism and other related disorders: ADHD and OCD. Retrieved July 15, 2021, from http://www.alasbimnjournal.net/contenidos/frontal-and-temporal-lobe-dysfunction-in-autism-and-other-related-disorders-adhd-and-ocd-80
Goodfellow, I., bengio, Y., courville, A. (2016). Deep Learning. Cambridge, Massachusetts: The MIT Press.
Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K., Burkhard, P. (2012, December). Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR. American Journal of Neuroradiology, 33(11), 2123-2128.
Hao, A. J., He, B. L., Yin, C. H. (2015). Discrimination of ADHD children based on Deep Bayesian Network. IET International Conference on Biomedical Image and Signal Processing (ICBISP 2015), 1-6.
Höller, Y., Bathke, A. C., Uhl, A., Strobl, N., Lang, A., Bergmann, J., Staffen, W. (2017, September). Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms. Front Aging Neurosci, 7(9), 290.
Horn, J., Habert, M., Kas, A., Malek, Z., Maksud, P., Lacomblez, L., Fertil, B. (2009, October). Differential automatic diagnosis between Alzheimer's disease and frontotemporal dementia based on perfusion SPECT images. Artificial Intelligence in Medicine, 47(2), 147-158.
Hsu, S. Y., Lin, H. C., Chen, T. B., Du, W. C., Hsu, Y. H., Wu, Y. C., Chen, H. Y. (2019). Feasible Classified Models for Parkinson Disease from 99mTc-TRODAT-1 SPECT Imaging. Sensors (Basel, Switzerland), 19(7), 1740.
Huang, G., Zhu, Q., Siew, C. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70, 489-501.
Huang, S. F., Wen, Y. H., Chu, C. H., Hsu, C. C. (2020). A Shape Approximation for Medical Imaging Data. Basel, Switzerland, 20(20), 5879.
Iannaccone, R., Hauser, T. U., Ball, J., Brandeis, D., Walitza, S., Brem, S. (2015). Classifying adolescent attentiondeficit/hyperactivity disorder (ADHD) based on functional and structural imaging. Eur Child Adolesc Psychiatry, 24(10), 1279-1289.
Illán, I. A., Gorrz, J. M., Ramirez, J., Segovia, F., Jimenez-Hoyuela, J. M., Ortega Lozano, S. J. (2012). Automatic assistance to Parkinson's disease diagnosis in DaTSCAN SPECT imaging. Medical physics, 39(10), 5971-5980.
Jales, R. L., Santos-Filho, S. D. (2020). Discussion of Review on Protocols Treatments of Arachnoid Cysts Explored by Nuclear Medicine. EC Clinical and Medical Case Reports 3.6, 147-152.
Jin, L., Zeng, Q., He, J., Feng, Y., Wu, Y. (2019, January 1). A ReliefF-SVM-based method for marking dopamine-based disease characteristics: A study on SWEDD and Parkinson’s disease. Behavioural Brain Research, 356(1), pp. 400-407.
Johnston, B. A., Mwangi, B., Matthews, K., Coghill, D., Konrad, K., Steele, J. D. (2014). Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Hum Brain Mapp, 35, 5179-5189.
Kautzky, A., Vanicek, T., Philippe, C., Kranz, G. S., Wadsak, W., Mitterhauser, M., Lanzenberger, R. (2020, April 07). Machine learning classification of ADHD and HC by multimodal serotonergic data. Transl Psychiatry 10, p. 104.
Kaya, G. C., Pekcanlar, A., Bekis, R., Ada, E., Miral, S., Emiroğlu, N., Durak, H. (2002). Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder. Annals of Nuclear Medicine, 16(8), 527-531.
Kuang, D., Guo, X., An, X., Zhao, Y., He, L. (2014). Discrimination of ADHD Based on fMRI Data with Deep Belief Network. In C. Springer (Ed.), ICIC 2014: Intelligent Computing in Bioinformatics, (pp. 225-232).
Lazzaro, D., Montefusco, L. B. (2002). Radial basis functions for the multivariate interpolation of large scattered data sets. Journal of Computational and Applied Mathematics, 521-536.
Marras, C., Beck, J. C., Bower, J. H., Roberts, E., Ritz, B., Ross, G. W., Group, P. F. (2018, July 10). Prevalence of Parkinson’s disease across North America. NPJ Parkinson's Disease, p. 21.
Martinez-Murcia, F. J., Górriz, J. M., J., R., Illán, I. A., Segovia, F., Castillo-Barnes, D., Salas-Gonzalez, D. (2017, 14 November). Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases. Frontiers in Neuroinformatics, 11, p. 65.
Mena G, I. (2009, July). Neurospect: Imagenología funcional em Psiquiatría. Alasbimn Journal, 11(45).
Mete, M., Sakoglu, U., Spence, J. S., Devous, M. D., Sr, H. T., Adinoff, B. (2017). Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach. BMC Bioinformatics, 17(13), 357.
Murphy, K. P. (2012). Machine Learning: a Probabilistic Perspective. Cambridge, Massachusetts: MIT Press.
Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. Cambridge, Massachusetts: MIT Press.
Nemenyi, P. B. (1963). Distribution-free Multiple Comparisons. PhD thesis, Princeton University.
Nicastro, N., Wegrzyk, J., Preti, M. G., Fleury, V., Van de Ville, D., Garibotto, V., Burkhard, P. R. (2019). Classification of degenerative parkinsonism subtypes by support-vector-machine analysis and striatal 123I-FP-CIT indices. Journal of Neurology, 266, 1771-1781.
Oliveira, F. P., Castelo-Branco, M. (2015). Computer-aided diagnosis of Parkinson's disease based on [(123)I]FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines. J Neural Eng, 12(2).
Oliveira, F. P., Faria, D. B., Costa, D. C., Castelo-Branco, M., Tavares, J. M. (2018, June). Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson's disease based on [123I]FP-CIT SPECT images. Eur J Nucl Med Mol Imaging, 45(6), 1052-1062.
Olson, D., Delen, D. (2008). Advanced Data Mining Techniques. Springer.
O'Malley, J. P., Ziessman, H. A., Thrall, J. H. (2020). Nuclear Medicine and Molecular Imaging: The Requisites (5th ed.). Elsevier Health Sciences.
Padilla, P., López, M., Górriz, J. M., Ramírez, J., Salas-González, D., Álvarez, I. (2012). NMF-SVM Based CAD Tool Applied to Functional Brain Images for the Diagnosis of Alzheimer's Disease. IEEE Transactions on Medical Imaging, 31(2), 207-216.
Palumbo, B., Fravolini, M. L., Buresta, T., Pompili, F., Forini, N., Nigro, P., Tambasco, N. (2014, December). Diagnostic accuracy of Parkinson disease by support vector machine (SVM) analysis of 123I-FP-CIT brain SPECT data: implications of putaminal findings and age. Medicine, 93(27), e228.
Peng, X., Lin, P., Zhang, T., Wang, J. (2013). Extreme learning machine-based classification ofADHD using brain structural MRI data. Plos One, 8(11), 1-12.
Prashanth, R., Dutta Roy, S., Mandal, P. K., Ghosh, S. (2016, June). High-Accuracy Detection of Early Parkinson's Disease through Multimodal Features and Machine Learning. Int J Med Inform, 90, 13-21.
Pulini, A. A., Kerr, W. T., Loo, S. K., Lenartowicz, A. (2019). Classification accuracy of neuroimaging biomarkers in attention-deficit/hyperactivity disorder: effects ofsample size and circular analysis. Biological psychiatry. Cognitive Neuroscience and Neuroimaging, 4(2), 108–120.
Qureshi, M., Oh, J., Min, B., Jo, H. J., Lee, B. (2017). Multi-modal, Multi-measure, and Multi-class Discrimination of ADHD with Hierarchical Feature Extraction and Extreme Learning Machine Using Structural and Functional Brain MRI. Frontiers in Human Neuroscience, 11, 157.
Rondina, J. M., Ferreira, L., de Souza Duran, F. L., Kubo, R., Ono, C., Leite, C. C., Busatto, G. F. (2017, November). Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases. Neuroimage Clin, 9(17), 628-641.
Salas-Gonzalez, D., Segovia, F., Martínez-Murcia, F. J., Lang, E., Gorriz, J., Ramırez, J. (2016, January 01). An Optimal Approach for Selecting Discriminant Regions for the Diagnosis of Alzheimer's Disease. Current Alzheimer Research, pp. 838-844.
Santra, A., Kumar, R. (2014, Oct-Dec). Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice. Indian J Nucl Med, 29(4), 210–221.
Segovia, F., Górriz, J. M., Ramírez, J., Martínez-Murcia, F. J., Castillo-Barnes, D. (2019). Assisted Diagnosis of Parkinsonism Based on the Striatal Morphology. International Journal of neural systems, 29(9).
Segovia, F., Górriz, J. M., Ramírez, J., Salas-González, D., Álvarez, I., López, M., Padilla, P. (2010, April 19). Classification of functional brain images using a GMM-based multi-variate approach. Neuroscience Letters, 474(1), 58–62.
Sen, B., Borle, N. C., Greiner, R., Brown, M. R. (2018). A general prediction model for the detection of ADHD and Autism using structural and functional MRI. Plos One, 13(4).
Shiiba, T., Arimura, Y., Nagano, M., Takahashi, T., Takaki, A. (2020). Improvement of classification performance of Parkinson's disease using shape features for machine learning on dopamine transporter single photon emission computed tomography. Plos One, 15(1).
Tagare, H., DeLorenzo, C., Chelikani, S., Saperstein, L., Fulbright, R. K. (2017, May). Voxel-based logistic analysis of PPMI control and Parkinson's disease DaTscans. Neuroimage, 15(152), 299-311.
Vázquez-Abad, F. J., Bernabel, S., Dufresne, D., Sood, R., Ward, T., Amen, D. (2020). Deep Learning for Mental Illness Detection Using Brain SPECT Imaging. Medical Imaging and Computer-Aided Diagnosis (pp. 17-26). Singapore: Springer.
Wilcox, R. (2017). Introduction to Robust Estimation and Hypothesis Testing (4th ed.). London: Academic Press.
Witten, I. H., Frank, E., Hall, M. A. (2011). Data Mining: Practical machine Learning Tools and Techniques (3rd ed.). Amsterdam: Morgan Kaufmann Series in Data Management Systems Morgan Kaufmann.
Xu, J., Kochanek, K. D., Sherry, L., Murphy, B. S., Tejada-Vera, B. (2010, May). Deaths: final data for 2007. National vital statistics reports : from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 58(19), 1-19.
Zhang-James, Y., Helminen, E. C., Liu, J., Franke, B., Hoogman, M., Faraone, S. V. (2020). Machine Learning Classification of Attention-Deficit/Hyperactivity Disorder Using Structural MRI Data. bioRxiv.
Zimmermann, R. (2017). Nuclear Medicine: Radioactivity for Diagnosis and Therapy (2nd ed.). EDP Sciences.
Zou, L., Zheng, J., Miao, C., McKeown, M. J., Wang, Z. J. (2017). 3D CNN Based Automatic Diagnosis of Attention Deficit Hyperactivity Disorder Using Functional and Structural MRI. IEEE Access, 5, 23626–23636.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Marcilio de Oliveira Meira; Anne Magaly de Paula Canuto; Bruno Motta de Carvalho; Roberto Levi Cavalcanti Jales
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.