Preparation and characterization of poly(butylene adipate-co-terephthalate) films added with Melaleuca alternifolia essential oil
DOI:
https://doi.org/10.33448/rsd-v11i8.31332Keywords:
Poly(butylene adipate-co-terephthalate); Melaleuca alternifolia; Essential oil; Active packaging.Abstract
With the aim of prolonging the shelf life and preserving the properties of food, active packaging emerged. In this study, poly(butylene adipate-co-terephthalate) films added with 5, 10 and 15 % (m/m) of Melaleuca alternifolia essential oil were prepared by the solution casting technique. The oil was characterized by hyphenated gas chromatography coupled with mass spectrometry (GC-MS) and Fourier transform mid-infrared spectroscopy (FTIR), identifying as major components: aromadendrene, α-guayene, α-terpineol and 2-methylisoborneol. Oil’s antimicrobial activity was evaluated against the bacteria Escherichia coli by disk-diffusion technique in agar medium, obtaining a halo of 15 mm. The mid-infrared spectra of the films, when subjected to a principal component analysis, showed that there was incoporation of oil into the polymer matrix. The increase in the oil concentration increased the water vapor permeability and reduced the film stiffness, evaluated by mechanical tensile tests. It was also found, through thermogravimetry and differential exploratory calorimetry techniques that the incorporated oil did not change: the thermal stability of the polymer (keeping the degradation in a single step), the melting and crystallization temperatures, the degree of crystallinity of the polymer and the enthalpy of fusion. Finally, the film added with 15% (w/w) of oil showed good inhibition against the Escherichia coli bacteria, after 12 days of contact with a sample of mozzarella cheese at 4º C, reducing the inoculated microbial load of 1,08 ∙ 107 CFU/mL to 2,75 ∙ 106 CFU/mL, which makes this material a promising antimicrobial active packaging.
References
Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028
Amaral, F. G. (2014). Desenvolvimento de filme comestível a base de fécula de açafrão (Curcuma longa L.) e lipídios [Dissertação de Mestrado, Universidade Federal de Goiás]. Centro de Recursos Computacionais da UFG. https://files.cercomp.ufg.br/weby/up/71/o/Dissertação_Fernanda_amaral_corrigida_katiuchia_2014.pdf
American Society for Testing and Materials. (1995). Standard test methods for water vapor transmission of materials (ASTM E96:1995).
American Society for Testing and Materials. (2018). Standard test method for tensile properties of thin plastic sheeting (ASTM D882:2018).
Battisti, R., Fronza, N., Vargas Júnior, Á., Silveira, S. M., Damas, M. S. P., & Quadri, M. G. N. (2017). Gelatin-coated paper with antimicrobial and antioxidant effect for beef packaging. Food Packaging and Shelf Life, 11, 115-124. https://doi.org/10.1016/j.fpsl.2017.01.009
Bheemaneni, G., Saravana, S., & Kandaswamy, R. (2018). Processing and characterization of poly (butylene adipate-co-terephthalate) / wollastonite biocomposites for medical applications. Materials Today: Proceedings, 5(1), 1807-1816. https://doi.org/10.1016/j.matpr.2017.11.279
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods: a review. International Journal of Food Microbiology, 94(3), 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Comin, V. M., Lopes, L. Q. S., Quatrin, P. M., Souza, M. E., Bonez, P. C., Pintos, F. G., Raffin, R. P., Vaucher, R. A., Martinez, D. S. T., & Santos, R. C. V. (2016). Influence of Melaleuca alternifolia oil nanoparticles on aspects of Pseudomonas aeruginosa biofilm. Microbial Pathogenesis, 93, 120-125. https://doi.org/10.1016/j.micpath.2016.01.019
D’Arrigo, M., Ginestra, G., Mandalari, G., Furneri, P. M., & Bisignano, G. (2010). Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli. Phytomedicine, 17 (5), 317-322. https://doi.org/10.1016/j.phymed.2009.07.008
Dannenberg, G. S., Funck, G. D., Cruxen, C. E. S., Marques, J. L., Silva, W. P., & Fiorentini, Â. M. (2017). Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: potential for application as active packaging for sliced cheese. LWT: Food Science and Technology, 81, 314-318. https://doi.org/10.1016/j.lwt.2017.04.002
Debiagi, F., Kobayashi, R. K. T., Nakazato, G., Panagio, L. A., & Mali, S. (2014). Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Industrial Crops and Products, 52, 664-670. https://doi.org/10.1016/j.indcrop.2013.11.032
Domínguez, R., Barba, F. J., Gómez, B., Putnik, P., Kovačević, D. B., Pateiro, M., Santos, E. M., & Lorenzo, J. M. (2018). Active packaging films with natural antioxidants to be used in meat industry: a review. Food Research International, 113, 93-101. https://doi.org/10.1016/j.foodres.2018.06.073
Fráguas, R. M., Simão, A. A., Faria, P. V., Queiroz, E. R., Oliveira Junior, Ê. N., & Abreu, C. M. P. (2015). Preparo e caracterização de filmes comestíveis de quitosana. Polímeros, 25(Suppl.), 48-53. https://doi.org/10.1590/0104-1428.1656
Grando, T. H., Baldissera, M. D., Gressler, L. T., Sá, M. F., Bortoluzzi, B. N., Schafer, A. S., Ebling, R. C., Raffin, R. P., Santos, R. C. V., Stefani, L. M., Vaucher, R., Leal, M. L. R., & Monteiro, S. G. (2016). Melaleuca alternifolia anthelmintic activity in gerbils experimentally infected by Haemonchus contortus. Experimental Parasitology, 170, 177-183. https://doi.org/10.1016/j.exppara.2016.09.004
Graziano, T. S., Calil, C. M., Sartoratto, A., Franco, G. C. N., Groppo, F. C., & Cogo-Müller, K. (2016). In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria. Journal of Applied Oral Science, 24(6), 582-589. https://doi.org/10.1590/1678-775720160044
Hammer, K. A., Carson, C. F., & Riley, T. V. (2004). Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. Journal of Antimicrobial Chemotherapy, 53(6), 1081-1085. https://doi.org/10.1093/jac/dkh243
Haute, S. van, Raes, K., Devlieghere, F., & Sampers, I. (2017). Combined use of cinnamon essential oil and MAP/vacuum packaging to increase the microbial and sensorial shelf life of lean pork and salmon. Food Packaging and Shelf Life, 12, 51-58. https://doi.org/10.1016/j.fpsl.2017.02.004
Ibrahim, N. A., Rahim, N. M., Yunus, W. Z. W., & Sharif, J. (2011). A study of poly vinyl chloride / poly(butylene adipate-co-terephthalate) blends. Journal of Polymer Research, 18(5), 891-896. https://doi.org/10.1007/s10965-010-9486-1
Kuchnier, C. N. (2014). Estudo do efeito de aditivo extensor de cadeia multifuncional em blendas de PLA/PBAT [Dissertação de Mestrado, Universidade Estadual de Campinas]. Biblioteca Digital Brasileira de Teses e Dissertações. https://bdtd.ibict.br/vufind/Record/CAMP_3104e6f3097a79fc99e53ed71f5baaeb
Kulkarni, A., Jan, N., & Nimbarte, S. (2012). Monitoring of antimicrobial effect of GC-MS standardized Melaleuca alternifolia oil (tea tree oil) on multidrug resistant uropathogens. IOSR Journal of Pharmacy and Biological Sciences, 2(2), 6-14. https://doi.org/10.9790/3008-0220614
Kumar, M., Mohanty, S., Nayak, S. K., & Parvaiz, M. R. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property biodegradable PLA/PBAT blend and its nanocomposites. (2010). Bioresource Technology, 101(21), 8406-8415. https://doi.org/10.1016/j.biortech.2010.05.075
Martelli, S. M., Moore, G., Paes, S. S., Gandolfo, C., & Laurindo, J. B. (2006). Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT: Food and Science Technology, 39(3), 292-301. https://doi.org/10.1016/j.lwt.2004.12.014
Pires, V. G. A. (2016). Incorporação de nanoemulsões de óleos essenciais de melaleuca, copaíba e limão em filmes de alginato de sódio para utilização como curativo [Dissertação de Mestrado, Universidade Estadual Paulista]. Repositório Institucional da UNESP. https://repositorio.unesp.br/handle/11449/138091
Sánchez-Gonzalez, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan-tea tree essential oil composite films. Journal of Food Engineering, 98(4), 443-452. https://doi.org/10.1016/j.jfoodeng.2010.01.026
Sánchez-Gonzalez, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids, 23(8), 2102-2109. https://doi.org/10.1016/j.foodhyd.2009.05.006
Scheibel, J. M., Menezes, F. C., Reginatto, C. L., Silva, C., Moura, D. J., Rodembusch, F., Bussamara, R., Weibel, D. E., & Soares, R. M. D. (2021). Antibiotic-loaded wound dressings obtained from the PBAT-gentamicin combination. Journal of Applied Polymer Science, 138(27), e50633. https://doi.org/10.1002/app.50633
Siddique, S., Parveen, Z., Firdaus-e-Bareen, Chaudhary, M. N., Mazhar, S., & Nawaz, S. (2017). The essential oil of Melaleuca armillaris (Sol. ex Gaertn.) Sm. leaves from Pakistan: a potential source of eugenol methyl ether. Industrial Crops & Products, 109, 912-917. https://doi.org/10.1016/j.indcrop.2017.09.048
Silva, C. S., Figueiredo, H. M., Stamford, T. L. M., & Silva, L. H. M. (2019). Inhibition of Listeria monocytogenes by Melaleuca alternifolia (tea tree) essential oil in ground beef. International Journal of Food Microbiology, 293, 79-86. https://doi.org/10.1016/j.ijfoodmicro.2019.01.004
Silverstein, R. M., Webster, F. X., & Kiemle, D. F. (2007). Identificação espectrométrica de compostos orgânicos (7a ed.). LTC.
Siyamak, S., Ibrahim, N. A., Abdolmohammadi, S., Yunus, W. M. Z. W., & Rahman, M. Z. A. (2012). Effect of fiber esterification on fundamental properties of oil palm empty fruit bunch fiber/poly(butylene adipate-co-terephthalate) biocomposites. International Journal of Molecular Sciences, 13(2), 1327-1346. https://doi.org/10.3390/ijms13021327
Souza, C. F., Baldissera, M. D., Santos, R. C. V., Raffin, R. P., & Baldisserotto, B. (2017). Nanotechnology improves the therapeutic efficacy of Melaleuca alternifolia essential oil in experimentally infected Rhamdia quelen with Pseudomonas aeruginosa. Aquaculture, 473, 169-171. https://doi.org/10.1016/j.aquaculture.2017.02.014
Souza, M. E., Clerici, D. J., Verdi, C. M., Fleck, G., Quatrin, P. M., Spar, L. R., Bonez, P. C., Santos, C. F., Antoniazzi, R. P., Zanatta, F. B., Gundel, A., Martinez, D. S. T., Vaucher, R. A., & Santos, R. C. V. (2017). Antimicrobial activity of Melaleuca alternifolia nanoparticles in polymicrobial biofilm in situ. Microbial Pathogenesis, 113, 432-437. https://doi.org/10.1016/j.micpath.2017.11.005
Tranchida, P. Q., Shellie, R. A., Purcaro, G., Conte, L. S., Dugo, P., Dugo, G., & Mondello, L. (2010). Analysis of fresh and aged tea tree essential oils by using GCxGC-qMS. Journal of Chromatographic Science, 48(4), 262-266. https://doi.org/10.1093/chromsci/48.4.262
Wang, H., Wei, D., Zheng, A., & Xiao, H. (2015). Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polymer Degradation and Stability, 116, 14-22. https://doi.org/10.1016/j.polymdegradstab.2015.03.007
Weng, Y.-X., Jin, Y.-J., Meng, Q.-Y., Wang, L., Zhang, M., & Wang, Y.-Z. (2013). Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polymer Testing, 32(5), 918-926. https://doi.org/10.1016/j.polymertesting.2013.05.001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Augusto Guilherme Feitosa Cacho Borges; Pedro Henrique Pessoa; Tiago Lopes de Araújo; Karina Carvalho de Souza; Camila Nunes Carneiro; Pâmela Barcelar Ferreira Gomes da Silva de Luna; Glória Maria Vinhas; Yêda Medeiros Bastos de Almeida
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.