Electro-synthesized composite of polyaniline and gum Arabic for colorimetric ammonia vapor detection

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31469

Keywords:

PAni; Polysaccharide; Electrochemical synthesis; Composite.

Abstract

Polyaniline (PAni) is a conductive polymer with colorimetric properties, which can be combined with biopolymers to form novel composite materials. These materials can be used as a colorimetric sensor/indicator in the identification of different kinds of analytes. The present study aimed to develop a film of PAni and gum Arabic (GA) by electrochemical method to evaluate its potential use in a colorimetric sensor for ammonia vapor (NH3). The composite PAni/GA was prepared by electrochemical polymerization on a gold surface using the cyclic voltammetry technique. The stability of the films was evaluated in acid (HCl 0.1 mol L-1) after 25 imaging cycles. Strongly acidified gum arabic solution (pH 0.0) and a sweep speed of 10 mV s-1 caused higher current density in the film formation. The morphology of the films was observed by SEM and the presence of cracks in its structure can favor the entry of gases. The response of the composite in the presence of NH3 was measured using a colorimeter. The PAni/GA composite is a promising and rapid tool for use in colorimetric sensors in the detection of NH3.

Author Biography

Maria Roniele Félix Oliveira, Universidade Estadual do Ceará

Methodology, Formal analysis, Investigation

References

Anju, V. P., Jithesh, P. R., & Narayanankutty, S. K. (2019). A novel humidity and ammonia sensor based on nanofibers/polyaniline/polyvinyl alcohol. Sensors and Actuators A: Physical, 285, 35–44. https://doi.org/10.1016/J.SNA.2018.10.037

Babaladimath, G., Vishalakshi, B., & Nandibewoor, S. T. (2018). Electrical conducting Xanthan Gum-graft-polyaniline as corrosion inhibitor for aluminum in hydrochloric acid environment. Materials Chemistry and Physics, 205, 171–179. https://doi.org/10.1016/J.MATCHEMPHYS.2017.11.008.

Cornelsen, P. A., Quintanilha, R. C., Vidotti, M., Gorin, P. A. J., Simas-Tosin, F. F., & Riegel-Vidotti, I. C. (2015). Native and structurally modified gum arabic: Exploring the effect of the gum’s microstructure in obtaining electroactive nanoparticles. Carbohydrate Polymers, 119, 35–43. https://doi.org/10.1016/J.CARBPOL.2014.11.020.

Eiras, C., et al. (2001). Nanocompósitos eletroativos de poli-o-metoxianilina e polissacarídeos naturais, Quimica Nova, 30 5, 1158–1162. 10.1590/s0100-40422007000500020.

Gonçalves, J. P., de Oliveira, C. C., da Silva Trindade, E., Riegel-Vidotti, I. C., Vidotti, M., & Simas, F. F. (2021). In vitro biocompatibility screening of a colloidal gum Arabic-polyaniline conducting nanocomposite. International Journal of Biological Macromolecules, 173, 109–117. https://doi.org/10.1016/J.IJBIOMAC.2021.01.101.

Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32(8–9), 876–921. https://doi.org/10.1016/J.PROGPOLYMSCI.2007.05.012.

Hussain A. M. P., & Kumar, A. (2003). Electrochemical synthesis and characterization of chloride doped polyaniline, Bulletin of materials science, 26 3, 329–334. 10.1007/BF02707455.

Ji, R., Shi, W., Wang, Y., Zhang, H., & Min, J. (2020). Nondestructive estimation of bok choy nitrogen status with an active canopy sensor in comparison to a chlorophyll meter. Pedosphere, 30(6), 769–777. https://doi.org/10.1016/S1002-0160(20)60037-6.

Kumar, L., Rawal, I., Kaur, A., & Annapoorni, S. (2017). Flexible room temperature ammonia sensor based on polyaniline. Sensors and Actuators B: Chemical, 240, 408–416. https://doi.org/10.1016/J.SNB.2016.08.173.

Kukla, A. L., Shirshov, Y. M., & Piletsky, S. A. (1996). Ammonia sensors based on sensitive polyaniline films. Sensors and Actuators B: Chemical, 37(3), 135–140. https://doi.org/10.1016/S0925-4005(97)80128-1

Macdiarmid, A. G., Chiang, J. C., Richter, A. F., & Epstein, A. J. (1987). Polyaniline: a new concept in conducting polymers. Synthetic Metals, 18(1–3), 285–290. https://doi.org/10.1016/0379-6779(87)90893-9

Macedo, L. L., Vimercati, W. C., Araújo, C. D., Maradini Filho, A. M., Saraiva, S. H., & Teixeira, L. J. (2021). Banana liqueur made with yacon syrup: evaluation of stability during maturation. Brazilian Journal of Food Technology, 24, 1-11. 10.1590/1981-6723.03120.

Mattos, L. L. (2016). Eletrodos de polianilina para aplicação em pseudocapacitores. Universidade Federal de Santa Catarina. https://repositorio.ufsc.br/xmlui/handle/123456789/168131

Mattoso, L. H. C. (1996). Polianilinas: Síntese, Estrutura e Propriedades, Química Nova, 19 4, 388–399.

Nicolas-Debarnot, D., & Poncin-Epaillard, F. (2003). Polyaniline as a new sensitive layer for gas sensors. Analytica Chimica Acta, 475(1–2), 1–15. https://doi.org/10.1016/S0003-2670(02)01229-1.

OLIVEIRA, M. R. F. (2020). (nano)compósitos baseados em polissacarídeo de goma de cajueiro incorporado a polipirrol e polianilina para o desenvolvimento de sensores, Universidade Estadual do Ceará.

Oliveira, R. C., Romero, F. B., Alves, C. R., Biswas, A., Cheng, H. N., & Furtado, R. F. (2019). Filmes de polianilina (pani) eletropolimerizados sobre superfície de ito para uso como indicador colorimétrico para detecção da amônia; polimerização de filmes de pani como indicador da presença de amõnia., Revista da Universidade Vale do Rio Verde, 17 1, 1–9. 10.5892/ruvrd.v17i1.5615.

Petrov, P., Georgiev, G., Momekova, D., Momekov, G., & Tsvetanov, C. B. (2010). UV-assisted grafting of polymers: A method towards biocompatible carbon nanotubes. Polymer, 51(12), 2465–2471. https://doi.org/10.1016/J.POLYMER.2010.04.033.

Quintanilha, R. C., Orth, E. S., Grein-Iankovski, A., Riegel-Vidotti, I. C., & Vidotti, M. (2014). The use of gum Arabic as “Green” stabilizer of poly(aniline) nanocomposites: A comprehensive study of spectroscopic, morphological and electrochemical properties. Journal of Colloid and Interface Science, 434, 18–27. https://doi.org/10.1016/J.JCIS.2014.08.006.

Shi, Z., Phillips, G.O., & Yang, G. (2013). Nanocellulose electroconductive composites. Nanoscale, 5 8, 3194-201 . 10.1039/c3nr00408b

Sinha, S., & Kaur, G. (2019). Potential applications of advanced biosensor systems for the real-time monitoring of wastewater treatment plants. Tools, Techniques and Protocols for Monitoring Environmental Contaminants, 75–94. https://doi.org/10.1016/B978-0-12-814679-8.00004-2

Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74(5), 857–867. https://doi.org/10.1351/PAC200274050857/MACHINEREADABLECITATION/RIS

Sulaiman, M. G. M., & AL-Farga, A. (2020). Synthesis of Gum Arabic-g-polyaniline using diode laser. International Journal of Biological Macromolecules, 161, 848–853. https://doi.org/10.1016/J.IJBIOMAC.2020.06.111.

Tanguy, N. R., Thompson, M., & Yan, N. (2018). A review on advances in application of polyaniline for ammonia detection. Sensors and Actuators B: Chemical, 257, 1044–1064. https://doi.org/10.1016/J.SNB.2017.11.008. DOI: 10.1016/j.snb.2017.11.008.

Tassanawat, S., Phandee, A., Magaraphan, R., Nithitanakul, M., & Manuspiya, H. (2007). pH-Sensitive PP/Clay Nanocomposites for Beverage Smart Packaging. 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 478–482. 10.1109/NEMS.2007.352062 478-482.

Thambidurai, S., & Pandiselvi, K. (2018). Polyaniline/Natural Polymer Composites and Nanocomposites. Polyaniline Blends, Composites, and Nanocomposites, 235–256. https://doi.org/10.1016/B978-0-12-809551-5.00009-6

Veras, T. N. (2020). Characterization and DFT calculation of poly(m-anisidine) synthesized with different dopant acids ( m -ani). Journal of Molecular Structure, 1201, 127182. 10.1016/j.molstruc.2019.127182

Wang, W., Li, M., Li, H., Liu, |Xinghai, Ting Guo, Zhang, G., & Xiong, Y. (2017). A renewable intelligent colorimetric indicator based on polyaniline for detecting freshness of tilapia. Packaging Technology and Science, 31, 133- 140. https://doi.org/10.1002/pts.2358

Xu, H., Li, X., & Wang, G. (2015). Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors. Journal of Power Sources, 294, 16–21. https://doi.org/10.1016/J.JPOWSOUR.2015.06.053.

Zhou, K. L., Wang, H., Jiu, J. T., Liu, J. B., Yan, H., & Suganuma, K. (2018). Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chemical Engineering Journal, 345, 290–299. https://doi.org/10.1016/J.CEJ.2018.03.175

Downloads

Published

05/07/2022

How to Cite

FREIRE, G. A.; MIRANDA, K. W. E.; GONZAGA, M. L. da C.; OLIVEIRA, M. R. F.; CASTELO, R. M.; SILVA, L. C. da .; OLIVEIRA, M. de A.; ALVES, C. R.; FURTADO, R. F. . Electro-synthesized composite of polyaniline and gum Arabic for colorimetric ammonia vapor detection. Research, Society and Development, [S. l.], v. 11, n. 9, p. e15911931469, 2022. DOI: 10.33448/rsd-v11i9.31469. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31469. Acesso em: 16 nov. 2024.

Issue

Section

Exact and Earth Sciences