Influence of width on pull-out capacity of a L-shaped plate anchor in cohesive-frictional soil
DOI:
https://doi.org/10.33448/rsd-v11i9.31671Keywords:
Experimental pull-out analysis; Shallow foundations; Plate anchors; Bearing capacity; Footing size.Abstract
This work experimentally presented the effect of soil compaction, the footing size (l) and overload on the pull-out capacity of L-shaped anchor laid in sandy clayey soil from load displacements curves obtained in tests of static pull-out. The inclined load, arising from the configuration of guyed towers, develops horizontal and vertical response of the anchor and most of the articles until now focused on the study of anchor seated in a horizontal or vertical position, in addition to not verifying the influence of length/width and its three-dimensional effect. Thirteen experimental pullout tests were performed with progressive weight increases until the soil rupture, noting the respective displacements in L-shaped anchor with four different lengths: 20 cm, 15 cm, 10 cm and 5 cm. Analyzing tension versus footing size (l) behaviour, it was verified that load capacity does not present a constant linear increasing variation. For anchors with short length, the mobilized tension increases considerably as the contact area decreases, probably developing a puncture failure in soil. From the length equal to 10 cm, the behaviour begins to follow the assumption by Terzaghi (1943) with linear growth of pull-out capacity. This work finally presents a theoretical values of shape factors Nc, Nq and Nγ , influenced by the applied load and the soil compaction.
References
Aoki, N., Cintra, J. C. A., & Vianna, A. P. F. (2007). Influence of Footing Size and Matric Suction on the Behavior of Shallow Foundations in Collapsible Soil. Soils and Rocks: International Journal of Geotechical and Geoenvironmental Engineering, 30(3), pp. 127-137.
Bhattacharya, P., & Kumar, J. (2014). Pullout capacity of inclined plate anchors embedded in sand. Canadian Geotechnical Journal, 51, 1635-1370. http://dx.doi.org/10.1139/cgj-2014-0114
Chin, F. K. (1970). Estimation of the Ultimate Load of Piles from Tests Not Carried to Failure. Proceedings of Second Southeast Asian Conference on Soil Engineering, Singapore, 11-15 June 1970, pp. 81-92.
Choudhary, A. K., & Dash, S. K. (2016). Load-carrying mechanism of vertical plate anchors in sand. International Journal of Geomechanics, 17(5): 04016116. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000813
Das, B. M. (1990). Earth anchors. Developments in Geotechnical Engeneering. Elsevier, Amsterdam – Oxford – New York – Tokyo.
De Beer, E. E. (1965a). Bearing capacity and settlement of foundations. Syposium on Bearing Capacity ans Settlement os Foindations. Heald at Duck University, Duham, pp. 15-34.
Evans, T. M., & Zhang, N. (2019). Three-dimensional simulations of plate anchor pullout in granular materials. International Journal of Geomechanics, 19(4): 04019004. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001367.
Giampa, J. R., Bradshaw, A. S., Gerkus, H., Gilbert, R. B., Gavi, K. G., & Sivakumar, V. (2018). The effect of shape on the pull-out capacity of shallow plate anchors in sand. Géotechnique, 17, pp. 1-9. http://doi.org/10.1680/jgeot.17.P.269
Hanna, A., Foriero, A., & Ayadat, T. (2014). Pullout capacity of inclined shallow single anchor plate in sand. Indian Geotechnical Journal, 45(1): 110-120. http://dx.doi.org/10.1007/s40098-014-0113-7
Hu, S., Zhao, L., Tan, Y., Yang, F., Wang, Z., & Zhao, Z. (2021). Variation analysis of uplift bearing characteristics of strip anchor plate in nonhomogeneous materials. International Journal of Geomechanics, 21(4): 04021037. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001974
Ilamparuthi, K., Dickin, E. A., & Muthukrisnaiah, K. (2002). Experimental investigation of the uplift behaviour of circular plate anchors embedded in sand. Canadian Geotechnical Journal, 39, pp. 648-664. http://dx.doi.org/10.1139/T02-005
Ilamparuthi, K., & Muthukrisnaiah, K. (1999). Anchor in sand bed: delineation of rupture surface. Ocean Engineering, 26, pp. 1249-1273.
Jadid, R.; Abedin, Z., Shahriar, A. R., & Arif, Z. U. (2018). Analytical model for pullout capacity of a vertical concrete anchor block embedded at shallow depth in cohesionless soil. International Journal of Geomechanics, 18 (7): 06018017. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001212
Liang, W., Zhao, J., Wu, H., & Soga, K. (2021). Multiscale modeling os anchor pullout in sand. Journal of Geotechnical and Geoenvironmental Engineering. 147(9): 04021091. http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0002599
Liu, J. P. E., Liu, M., & Zhu, Z. (2002). Sand deformation around an uplift plate anchor. Journal of Geotechnical and Geoenvironmental Engineering, 138(6), pp. 728-737. http://dx.doi.org/10.1061(ASCE)gt.1943-5606.0000633
Marifield, R. S., Sloan, S. W., & Yu, H. S. (2001). Stability of plate anchors in undrained clay. Géotechinique, 51(2), pp. 141-153.
Niroumand, H., Kassim, K. A., & Nazir, R. (2013). The influence of soil reinforcement on the uplift response of symmetrical anchor plate embedded in sand. Measurement, 46, pp. 2608-2629. http://dx.doi.org/10.1016/j.measurement.2013.04.072
Rowe R. K., & Davis, E. H. (1982a). The behaviour os anchor plates in clay. Géotechnique, 32(1), pp. 9-23.
Rowe R. K., & Davis, E. H. (1982b). The behaviour os anchor plates in sand. Géotechnique, 32(1), pp. 25-41.
Singh, V., Maitra, S., & Chatterjee, S. (2017). Generalized design approach for inclined strip anchors in clay. International Journal of Geomechanics, 17(6): 04016148. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000849
Terzaghi, K. (1943). Teorical Soil Mechanics. Editora Jonh Willey e Sons, 1ª edição, Nova Yorque.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Carolina Coelho de Magalhães Grossi; Leonardo Naoto Bussolin; Jeselay Hemetério Cordeiro dos Reis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.