Brugmansia suaveolens Bercht. & J. Presl: phytochemistry, cytotoxicity and its larvicidal activity against Aedes aegypti L. (Diptera: Culicidae)




Phytochemistry; Brugmansia suaveolens Bercht. & J. Presl; Larvicidal.


The mosquito family (Diptera: Culicidae) contains several species of great public health relevance due to their role as vectors of human diseases. Aedes aegypti, is responsible for transmitting some of the most important vector-borne viruses that affect humanity, including Dengue, Chikungunya and Zika. The widespread and intensive use of chemical insecticides has caused significant adverse environmental effects and contributed to the emergence of populations, reducing their efficiency. Therefore, it becomes urgent to develop new alternative tools for vector control. In this context, our study aimed to trace the profile of the main secondary metabolites, followed by determining the larvicidal action against the A. aegypti mosquito lineage; and in vitro safety, through cytotoxicity in eukaryotic cells. The extracts were obtained by maceration with better yields for leaves, in relation to the phytochemical profile, the presence of different classes of secondary metabolites was identified, such as triterpenes, flavonoids, tannins, saponins and alkaloids. Low larvicidal lethality was observed at the concentrations tested (250-1000 ppm). The analysis of the cytotoxic potential showed a low toxic activity after direct exposure of the extracts to Saccharomyces cerevisiae cells, even though the species was classified as toxic. The study presented results not determined in previous research of this species, providing an innovative, relevant and significant character for future research.


Aguiar, C. M. L., Alves, D. A., Wenseleers, T., & Imperatriz-Fonseca, V. L. (2014). Special Issue on Stingless bees: Integrating basic biology and conservation. Sociobiology, 61(4), ED.

Benelli, G. (2020). On a magical mystery tour of green insecticide research: current issues and challenges. Molecules 25 (21), 5014.

Carvalho D, Nimmo D, Naish N, McKerney A, Gray P, Wilke A, et al. (2014). Mass production of genetically modified Aedes aegypti for field releases in Brazil. J Vis Exp.,83: 1–10.

CDC. Integrated Mosquito Management. (2017) In: CDC- NCEZID [Internet]. Available from:

Chanda, S.V. & Kaneria, M.J. (2012). Optimization of conditions for the extraction of antioxidants from leaves of Syzygium cumini L. using different solvents. Food Anal. Methods, 5, 332–338. https://10.1007/s12161-011-9242-0

Coelho, A. A. M., De Paula J. E. & Espíndola, L. S. (2009). Atividade larvicida de vegetais sobre Aedes aeggypti (L.) (Diptera: Culiciedae), em condições de laboratório. Sociedade Etnomológica do Brasil, 4:3

Costa, V. & Ferreira, P.M. (2001). Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Molecular Aspects of Medicine, 22, 217-246.

Da Costa, S. P., Schuenck-Rodrigues, R. A., Cardoso, V. Da S., Valverde, S. S., Vermelho, A. B. & Ricci-Júnior, E. (2021). Antimicrobial activity of endophytic fungi isolated from Brugmansia suaveolens Bercht. & J. Presl. Research, Society and Development, 10(14), e113101421646.

De La Torre L, Navarrete H, Muriel P, Macía M & Balslev H. (2008). Enciclopedia de las Plantas Útiles del Ecuador. Quito: Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador & Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus.

Dutra LS. Desenvolvimento e Validação de Metodologia Analíticas para Quantificação ß ensina em extratos de Aesculus hippocastanum L. (Castanha da Índia) [dissertação]. Juiz de Fora: Universidade Federal de Juiz de Fora, 2012.

Einsenbrand, G., Pool-Zobel, B., Baker, V., Balls, M., Blaauboer, B.J., Boobis, A, Carere, A., Kevekordes, S., Lhuguenot, J.C., Pieters, R. & Kleiner, J. (2002). Methods of in vitro toxicology. Food and Chemical Toxicology, 40(2-3), 193-236,

Falkowski, M., Jahn-Oyac, A., Odonne, G., Flora, C., Estevez, Y., Toure, S., Boulogne, I.,Robinson, J.C., B´ereau, D., Petit, P., Azam, D., Coke, M., Issaly, J., Gaborit, P., Stien, D., Eparvier, V., Dusfour, I. & Hou¨el, E. (2020). Towards the optimization of botanical insecticides research: aedes aegypti larvicidal natural products in French Guiana. Acta Trop. 201, 105179

Fujiwara, G.M., Annies, V., de Oliveira, C.F., Lara, R.A., Gabriel, M.M., Betim, F.C.M., Nadal, J.M., Farago, P.V., Dias, J.F.G., Miguel, O.G., Miguel, M.D., Marques, F.A. & Zanin, S.M.W. (2017). Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicol. Environ. Saf. 139, 238–244.

Geller F, Murillo R, Steinhauser L, Heinzmann B, Albert K, Merfort I. & Laufer S. (2014). Four new flavonol glycosides from the leaves of Brugmansia suaveolens. Rev Molecules. 5(19), 6727-6736. https://10.3390/molecules19056727

Gobbo-Neto, L. & Lopes, N. P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30(2), 374-381

Hartman, T. (1996). Diversity and variability of plant secondary metabolism: a mechanistic view. Entomologia Experimentalis et Applicata, 80, 177-188.

Jørgensen P, & León-Yánez S, (1999). editors. Catalogue of the vascular plants of Ecuador. Monogr Syst Bot from Missouri Bot Gard. 75: 1–1182.

Muktar Y, Tamerat N & Shewafera A. (2016). Aedes aegypti as a Vector of Flavivirus. J Trop Dis.4.

Oliveira, R.B., Pires de Godoy, S.A. & Costa, F.B. (2003) In: Plantas tóxicas. Conhecimento e prevenção de acidentes. Ed. Holos, 34-37

Pavela, R., Maggi, F., Iannarelli, R., & Benelli, G. (2019). Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 193, 236–271.

Prasad, K., Recek, N., Zhou, R., Zhou, R., Aramesh, M., Wolff, A. & Ostrikov, K. (2019). Effect of multi-modal environmental stress on dose-dependent cytotoxicity of nanodiamonds in Saccharomyces cerevisiae cells. Sustainable Materials and Technologies, 22, e00123. https://doi:10.1016/j.susmat.2019.e00123

Radi, P.A. & Terrones, M. G. H. (2007). Metabólitos secundários de plantas medicinais. Revista Brasileira de Farmácia, 20(2), 18-22.

Reers, M., Smith, T.W., & Chen, L.B., (1991). J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 1991, 30, 18, 4480–4486.

Rodrigues, A.M., Martins, V.E.P. & Morais, S.M., 2020. Larvicidal efficacy of plant extractsand isolated compounds from Annonaceae and Piperaceae against Aedes aegypti and Aedes albopictus. Asian Pac. J. Trop. Med. 13, 384–396.

Rodrigues, A.M., Sampaio, C., de, G., de Souza, J.S.N., Campos, A.R., da Silva, A.B.R., de Morais, S.M. & Martins, V.E.P. (2019). Different susceptibilities of Aedes aegypti and Aedes albopictus larvae to plant-derived products. Rev. Soc. Bras. Med. Trop. 52, e20180197

Rodrigues, A.M., Silva, A.A.S., Pinto, C.C.C., Lima dos Santos, D., Carneiro de Freitas, J. C., Martins, V.E.P. & Maia De Morais, S., (2019). Larvicidal and Enzymatic Inhibition Effects of Annona muricata Seed Extract and Main Constituent Annonacin against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Pharmaceuticals 12 (3), 112.

Santos I. A., Souza F. J. M. A., Akisue G., Coelho F. A. S & Coelho M. D. G. (2013). Avaliação da atividade ovicida e larvicida de dez extratos vegetais ante Ancylostoma ssp. Rev Patol Trop 42(2): 209-216

Schenkel, E.P., Zaninnin, M., Mentz, L.A., Bordignon, S.A.L. & Irgang, B. (2001). Plantas Tóxicas. In: Simões C.M.O., Schenkel, E.P., Gosmann G., Mello, J.C.P., Mentz, L.A. e Petrovick, P.R., (eds) Farmacognosia: da planta ao medicamento. (3a ed.), Universidade/UFRGS

Schley RJ, Estrela M, Pérez-Escobar AO Bruneau A, Barraclough T, Floresta F, et al. (2018). Amazônia é um 'museu' para árvores neotropicais? A evolução do clado Brownea (Detarioideae, Leguminosae). Filogenética Molecular e Evolução.126:279-292.

Shamsi T. N, Parveen R., Ahmad A., Samal R. R., Kumar S., & Fatima S. (2018). Inhibition of gut proteases and development of dengue vector, Aedes aegypti by Allium sativum protease inhibitor. Acta Ecologica Sinica, 38 (5), 325-328.

Siegwart M., Graillot B., Blachere C., Besse S., Bardin M., Nicot P. C, et al. (2015). Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci. 6: 381.

Silverio, M. R. S., Espindola, L. S., Lopes, N.P., & Vieira, P.C. (2020). Plant natural productsfor the control of Aedes aegypti: the main vector of important arboviruses. Molecules. 25 (15), 3484.

Simas, N. K., Dellamora, E C L, Schripsema, Jan, Lage, Celso Luiz Salgueiro, Filho, A M. Wessjohann, L, Porzel, A & Kuster, R. M. (2013). Acetylenic 2-phenylethylamides and new isobutylamides from Acmella oleracea (L.) R. K. Jansen, a Brazilian spice with larvicidal activity on Aedes aegypti. Phytochemistry Letters, 6, 67-72.

Tavares, M., da Silva, M. R. M., de Oliveira de Siqueira, L. B., Rodrigues, R. A. S., Bodjolle-d’Almeida, L., dos Santos, E. P., & Ricci-Júnior, E. (2018). Trends in insect repellent formulations: A review. International Journal of Pharmaceutics. 539(1–2), 190-209.

Thiyagarajan P, Kumar P. M, Kovendan K., & Murugan K. Effect of medicinal plant and microbial insecticides for the sustainable mosquito vector control. (2014) Acta Biol Indica. 3: 527–535.

Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y. & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crop. Prod. 44, 566–571.

Wagner, H., & Bladt, S. (1995). Plant Drug Analysis: a thin layer chromatography atlas. Berlin: Stringer Verlag, 48p.

Wei Q, Yang G. W., Wang X. J., Hu X. X., & Chen, L. (2013). The study on optimization of Soxhlet extraction process for ursolic acid from Cynomorium. Shipin Yanjiu Yu Kaifa.34(7):85–8

WHO. Diretrizes para testes laboratoriais e de campo de larvicidas para mosquitos. Organização Mundial de Saúde. 2005, 1-41. https://OMS/CDS/WHOPES/GCDPP/2005.11

Wisdom, C. & Rodriguez, E. (1982). Quantitative variation of the sesquiterpene lactones and chromenes of Encelia farinosa. Biochemical Systematics and Ecology, 10(1), 43-48.

Yasir M., Sultana B., Nigam O. S., & Owusu-Apenten R. (2016). Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC-ESIMS/MS identification of phenolic components. Food Chem 199:307–313. https://10.1016/j.foodchem.2015.11.138




How to Cite

COSTA, S. P. da .; SCHUENCK-RODRIGUES, R. A.; SIMAS, N. K.; CARDOSO, V. da S.; DE OLIVEIRA, T. B. .; VALVERDE, S. S.; VERMELHO, A. B.; RICCI-JÚNIOR, E. Brugmansia suaveolens Bercht. & J. Presl: phytochemistry, cytotoxicity and its larvicidal activity against Aedes aegypti L. (Diptera: Culicidae). Research, Society and Development, [S. l.], v. 11, n. 9, p. e49411932081, 2022. DOI: 10.33448/rsd-v11i9.32081. Disponível em: Acesso em: 5 oct. 2022.



Health Sciences