Economic injury levels for control decision-making of thrips in soybean crops (Glycine max (L.) Merrill)

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.32114

Keywords:

Frankliniella schultzei; Caliothrips phaseoli; Economic damage; Glycine max.

Abstract

Soybean, Glycine max (L.) Merrill, is the most cultivated crop worldwide. Recently, thrips (Thysanoptera: Thripidae) has caused of up to 17% production losses to this crop. To improve its management, economic injury levels (EIL) are key tools in supporting decision-making systems in integrated pest management (IPM) programs. The EIL depend on the technology used for insecticide application. In this regard, pesticide treatment on soybean crops can be successfully performed by aircraft or tractors, especially among major producers (e.g., Brazil, the United States, Argentina, and China). There are currently no economic injury levels (EIL) for thrips in soybean crops. Therefore, the objective of this work was to determine economic injury levels for thrips in soybean, with insecticide applications by aircraft and by tractors. The study was carried out in four commercial soybean crops for two years. Frankliniella schultzei and Caliothrips phaseoli were observed attacking soybean plants. The EIL were 4.53 and 3.43 thrips sample-1 for insecticide application with aircraft and tractor, respectively. The economic injury levels, established in this study, can be used in integrated pest management program for soybean crops.

References

Agrocampo (2019). Tripes: nosso desafio é encontrar plantas de soja sem ataque. https://revistaagrocampo.com.br/noticia/manejo/tripes-da-soja-mauricio-pasini/

Al Heidary, M., Douzals, J. P., Sinfort, C., & Vallet, A. (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: a literature review. Crop Protection, 63, 120-130. https://doi.org/10.1016/j.cropro.2014.05.006

Bueno, M. R., da Cunha, J. P. A., & de Santana, D. G. (2017). Assessment of spray drift from pesticide applications in soybean crops. Biosystems Engineering, 154, 35-45. https://doi.org/10.1016/j.biosystemseng.2016.10.017

Bueno, A. D. F., Panizzi, A. R., Hunt, T. E., Dourado, P. M., Pitta, R. M., & Gonçalves, J. (2021). Challenges for adoption of integrated pest management (IPM): the soybean example. Neotropical Entomology, 50(1), 5-20. https://doi.org/10.1007/s13744-020-00792-9

Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60. https://doi.org/10.1002/fes3.108

CONAB (2017). Análises de mercado. https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-soja

Costa, C. C. (2017). Custos e benefícios do uso da pulverização aérea de agrotóxicos na agricultura. Embrapa.

da Cunha, J. P., Barizon, R. R., Ferracini, V. L., Assalin, M. R., & Antuniassi, U. R. (2017). Spray drift and pest control from aerial applications on soybeans. Engenharia Agrícola, 37, 493-501. https://doi.org/10.1590/1809-4430-Eng. Agric.v37n3p493-501/2017

Diamantino, M. L., Ramos, R. S., Sarmento, R. A., Pereira, P. S., & Picanço, M.C. (2021). Decision-making system for the management of Frankliniella schultzei thrips in commercial melon fields. Crop Protection, 139, 105346. https://doi.org/10.1016/j.cropro.2020.105346

Engel, E., & Pasini, M. P. B. (2020). Danos e manejo de tripes nas plantas de soja. https://www.grupocultivar.com.br/materias/danos-e-manejo-de-tripes-nas-plantas-de-soja

Estévez de Jensen, C., Funderburk, J. E., Skarlinsky, T., & Adkins, S. (2019). First Report of Tomato Chlorotic Spot Virus in soybean (Glycine max). Plant Disease, 103(10), 2701. https://doi.org/10.1094/PDIS-05-19-0979-PDN

FAOSTAT (2018). Statistics database. http://www.fao.org/faostat/en/#data/QC

Freedman, D., & Pisani, R., Purves, R. (2007). Instructor’s manual: for statistics. Norton & Co.

Gamundi, J. C., & Perotti, E. (2009). Evaluación de daño de Frankliniella schultzei (Trybom) y Caliothrips phaseoli (Hood) en diferentes estados fenológicos del cultivo de soja. Para Mejorar la Producción, 42, 107-111.

Giraudo, M. E. (2020). Dependent development in South America: China and the soybean nexus. Journal of Agrarian Change, 20(1), 60-78. https://doi.org/ 10.1111/joac.12333

Han, J., Nalam, V. J., Yu, I. C., & Nachappa, P. (2019). Vector competence of thrips species to transmit soybean vein necrosis virus. Frontiers in Microbiology, 10, 431. https://doi.org/10.3389/fmicb.2019.00431

Higley, L. G., & Pedigo, L.P. (1996). Economic thresholds for integrated pest management. University of Nebraska Press.

Hladik, M. L., Kolpin, D. W., & Kuivila, K. M. (2014). Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environmental pollution, 193, 189-196. https://doi.org/10.1016/j.envpol.2014.06.033

Irizarry, M. D., Groves, C. L., Elmore, M. G., Bradley, C. A., Dasgupta, R., German, T. L., Jardine, D. J., Rojas, E. S., Smith, D. L., Tenuta, A. U., & Whitham, S. A. (2016). Re-emergence of Tobacco streak virus infecting soybean in the United States and Canada. Plant Health Progress, 17(2), 92-94. https://doi.org/10.1094/PHP-BR-15-0052

Lima, C. H., Sarmento, R. A., Pereira, P. S., Ribeiro, A. V., Souza, D. J., & Picanço, M. C. (2019). Economic injury levels and sequential sampling plans for control decision-making systems of Bemisia tabaci biotype B adults in watermelon crops. Pest Management Science, 75(4), 998-1005. https://doi.org/10.1002/ps.5207

Lopes, M. C., Ribeiro, A. V., Costa, T. L., Arcanjo, L. D. P., Farias, E. S., Santos, A. A., Ramos, R. S., Araújo, T. A., & Picanço, M. C. (2019). Practical sampling plan for Liriomyza huidobrensis (Diptera: Agromyzidae) in tomato crops. Journal of Economic Entomology, 112(4), 1946-1952. https://doi.org/10.1093/jee/toz091

Matthews, G. A. (1998). Application techniques for agrochemicals. In Chemistry and Technology of Agrochemical Formulations (pp. 302-336). Springer, Dordrecht.

Matthews, G. A., Bateman, R., & Miller, P., 2014. Aerial application. In: Pesticide Application Methods (pp. 299-335). John Wiley & Sons.

Mouden, S., Sarmiento, K. F., Klinkhamer, P. G., & Leiss, K. A. (2017). Integrated pest management in western flower thrips: past, present and future. Pest Management Science, 73(5), 813-822. https://doi.org/10.1002/ps.4531

Moura, M. F., Lopes, M. C., Pereira, R. R., Parish, J. B., Chediak, M., Arcanjo, L. P., Carmo, D. G., & Picanço, M. C. (2018). Sequential sampling plans and economic injury levels for Empoasca kraemeri on common bean crops at different technological levels. Pest Management Science, 74(2), 398-405. https://doi.org/10.1002/ps.4720

Paes, J. S., Araújo, T. A., Ramos, R. S., Soares, J. R. S., Araújo, V. C. R., & Picanço, M. C. (2019). Economic injury level for sequential sampling plan of Frankliniella schultzei in bell pepper crops. Crop Protection, 123, 30-35. https://doi.org/10.1016/j.cropro.2019.05.011

Pedigo, L. P., & Higley, L. G. (1992). The economic injury level concept and environmental quality: a new perspective. American Entomologist, 38(1), 12-21. https://doi.org/https://doi.org/10.1093/a e/38.1.12

Pedigo, L. P., & Rice, M. E., 2014. Entomology and pest management. Waveland Press.

Pereira, P. S., Sarmento, R. A., Galdino, T. V. S., Lima, C. H. O., dos Santos, F. A., Silva, J., Santos, G. R., & Picanço, M.C. (2017). Economic injury levels and sequential sampling plans for Frankliniella schultzei in watermelon crops. Pest Management Science, 73(7), 1438-1445. https://doi.org/10.1002/ps.4475

Picanço, M. C., Bacci, L., Crespo, A. L. B., Miranda, M. M. M., & Martins, J. C. (2007). Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agricultural and Forest Entomology, 9(4), 327-335. https://doi.org/10.1111/j.1461-9563.2007.00346.x

Rueda, A., Badenes-Perez, F. R., & Shelton, A. M. (2007). Developing economic thresholds for onion thrips in Honduras. Crop Protection, 26(8), 1099-1107. https://doi.org/10.1016/j.cropro.2006.10.002

Sediyama, T., Silva, F., & Borém, A. (2015). Soja do plantio à colheita. Editora UFV.

Sharman, M., Thomas, J. E., & Persley, D. M. (2015). Natural host range, thrips and seed transmission of distinct Tobacco streak virus strains in Queensland, Australia. Annals of Applied Biology, 167(2), 197-207. https://doi.org/10.1111/aab.12218

Shelton, A. M., Nyrop, J. P., North, R. C., Petzoldt, C., & Foster, R. (1987). Development and use of a dynamic sequential sampling program for onion thrips., Thrips tabaci (Thysanoptera: Thripidae), on onions. Journal of Economic Entomology, 80(5), 1051-1056. https://doi.org/10.1093/jee/80.5.1051

Silva, E. M. P., Araújo, T. A. Ramos, R. S., Arcanjo, L. P., Carmo, D. G., Cavalleri, A., & Picanço, M.C. (2019). Conventional sampling plan for common blossom thrips, Frankliniella schultzei (Thysanoptera: Thripidae), in bell pepper. Journal of Economic Entomology, 112(3), 1447-1453. https://doi.org/ 10.1093/jee/toz037

USDA (2020). Production, supply, and distribution database. http://www.fas.usda.gov/psdonline/ psdHome.aspx

Zambrana-Echevarria, C., Roth, M., Dasgupta, R., German, T., Groves, C., & Smith, D. L. (2021). Sensitive and specific qPCR and nested RT-PCR assays for the detection of Tobacco streak virus in soybean. PhytoFrontiers™, 1(4), 291-300. https://doi.org/10.1094/PHYTOFR-11-20-0036-R

Zeiss, M. R. & Klubertanz, T. H. (2020). Sampling programs for soybean arthropods. In: Handbook of Sampling Methods for Arthropods in Agriculture (pp. 539-601). CRC Press.

Downloads

Published

17/07/2022

How to Cite

NEVES, D. V. C. .; LOPES, M. C. .; SARMENTO, R. de A. .; PEREIRA, P. S. .; PIRES, W. dos S.; PELUZIO, J. M. .; PICANÇO, M. C. . Economic injury levels for control decision-making of thrips in soybean crops (Glycine max (L.) Merrill). Research, Society and Development, [S. l.], v. 11, n. 9, p. e52411932114, 2022. DOI: 10.33448/rsd-v11i9.32114. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32114. Acesso em: 19 aug. 2022.

Issue

Section

Agrarian and Biological Sciences