Toxicity and residual effect of selected insecticides against Bemisia tabaci and Orius tristicolor
DOI:
https://doi.org/10.33448/rsd-v12i5.32189Keywords:
Whitefly; Pirate bug; Insecticide toxicity; Selectivity of insecticides; Residual period of control.Abstract
The whitefly Bemisia tabaci is a global pest, well-known for its capacity to transmit begomoviruses during sap sucking (<24h). Chemical control is mainly adopted, aiming to kill the insect before it acquires and transmits virus. In the present study, we evaluated the toxicity of 17 insecticides on B. tabaci and subsequently determined the lethal time for this pest (only for the insecticides that caused B. tabaci mortality equal to or greater than 80%). Here, we present an efficient methodology for assessing the toxicity in the individual adult. We also provided an investigation regarding the residual effect of insecticides to control B. tabaci on cabbage in greenhouses. The selectivity of these insecticides for the predator minute pirate bug Orius tristicolor was also assessed. Bifenthrin, cartap, chlorfenapyr and chlorpyrifos caused ≥ 80% mortality on whitefly adults. They also showed fast lethal effect (<24 h), principally cartap, which caused 100% of mortality in only 45 min. However, these insecticides showed a short residual period of whitefly control (<3 days) and did not present physiological selectivity for O. tristicolor. In terms of whitefly management, only a few insecticides were efficient to avoid begomoviruse transmission. The short residual period and the absence of physiological selectivity for the predator suggests that the use of these products should involve a sustainable approach. Taking pest population levels into account when making control decisions and for predator preservation in the agroecosystems should positively contribute to more sustainable whitefly management.
References
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. J. econ. Entomol, 18(2), 265-267.
Ben Abdelkrim, A., Hattab, T., Fakhfakh, H., Belkadhi, M. S., & Gorsane, F. (2017). A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci. PLoS One, 12(10), e0185724.
Araújo, T. A. D., Picanço, M. C., Ferreira, D. D. O., Campos, J. N., Arcanjo, L. D. P., & Silva, G. A. (2017). Toxicity and residual effects of insecticides on Ascia monuste and predator Solenopsis saevissima. Pest management science, 73(11), 2259-2266.
Bacci, L., Picanco, M. C., Rosado, J. F., Silva, G. A., Crespo, A. L. B., Pereira, E. J. G., & Martins, J. C. (2009). Conservation of natural enemies in brassica crops: comparative selectivity of insecticides in the management of Brevicoryne brassicae (Hemiptera: Sternorrhyncha: Aphididae). Applied entomology and zoology, 44(1), 103-113.
Banihashemi, A. S., Seraj, A. A., Yarahmadi, F., & Rajabpour, A. (2017). Effect of host plants on predation, prey preference and switching behaviour of Orius albidipennis on Bemisia tabaci and Tetranychus turkestani. International Journal of Tropical Insect Science, 37(3), 176-182.
Barbosa, L. D. F., Marubayashi, J. M., De Marchi, B. R., Yuki, V. A., Pavan, M. A., Moriones, E., ... & Krause‐Sakate, R. (2014). Indigenous American species of the Bemisia tabaci complex are still widespread in the Americas. Pest Management Science, 70(10), 1440-1445.
De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: a statement of species status. Annual review of entomology, 56(1), 1-19.
Brown, J. K., Perring, T. M., Cooper, A. D., Bedford, I. D., & Markham, P. G. (2000). Genetic analysis of Bemisia (Hemiptera: Aleyrodidae) populations by isoelectric focusing electrophoresis. Biochemical Genetics, 38(1), 13-25.
Bynum Jr, E. D., Archer, T. L., Lyle, W. M., Bordovsky, J. P., & Onken, A. B. (1991). Chemical coverage on corn and sorghum plants sprayed with lithium sulfate using an airplane, chemigation, or a multifunction irrigation-pesticide application system. Journal of economic entomology, 84(6), 1869-1878.
CABI, Crop Protection Compendium Pest [Online]. http://www.cabi.org/cpc/.
Chow, A., Chau, A., & Heinz, K. M. (2010). Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot)(Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biological control, 53(2), 188-196.
Chu, D., Wan, F. H., Zhang, Y. J., & Brown, J. K. (2010). Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environmental entomology, 39(3), 1028-1036.
Dângelo, R. A. C., Michereff‐Filho, M., Campos, M. R., Da Silva, P. S., & Guedes, R. N. C. (2018). Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a Neotropical scenario. Annals of Applied Biology, 172(1), 88-99.
De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: a statement of species status. Annual review of entomology, 56(1), 1-19.
de Freitas Bueno, R. C. O., de Freitas Bueno, A., Moscardi, F., Postali Parra, J. R., & Hoffmann‐Campo, C. B. (2011). Lepidopteran larva consumption of soybean foliage: basis for developing multiple‐species economic thresholds for pest management decisions. Pest Management Science, 67(2), 170-174.
Fang, Y., Jiao, X., Xie, W., Wang, S., Wu, Q., Shi, X., ... & Zhang, Y. (2013). Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Scientific reports, 3(1), 1-5.
FAO Food and Agriculture Organization of the United Nations, and Empresa Brasileira de Pesquisa Agropecuaria EMBRAPA. (2002). Guidelines for good agriculturalpractices, 21st edn.. FAO/Embrapa, Brasília, BR.
Fernandes, F. L., Bacci, L., & Fernandes, M. S. (2010). Impact and selectivity of insecticides to predators and parasitoids. EntomoBrasilis, 3(1), 1-10.
Garcerá, C., Moltó, E., & Chueca, P. (2014). Factors influencing the efficacy of two organophosphate insecticides in controlling California red scale, Aonidiella aurantii (Maskell). A basis for reducing spray application volume in Mediterranean conditions. Pest management science, 70(1), 28-38.
Gilbertson, R. L., Batuman, O., Webster, C. G., & Adkins, S. (2015). Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol, 2(1), 67-93.
Gontijo, P. C., Picanço, M. C., Pereira, E. J. G., Martins, J. C., Chediak, M., & Guedes, R. N. C. (2013). Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta. Annals of applied biology, 162(1), 50-59.
Gusmão, M. R., Picanço, M. C., Guedes, R. N. C., Galvan, T. L., & Pereira, E. J. G. (2006). Economic injury level and sequential sampling plan for Bemisia tabaci in outdoor tomato. Journal of Applied Entomology, 130(3), 160-166.
Horowitz, A. R., Kontsedalov, S., Denholm, I., & Ishaaya, I. (2002). Dynamics of insecticide resistance in Bemisia tabaci: a case study with the insect growth regulator pyriproxyfen. Pest Management Science: formerly Pesticide Science, 58(11), 1096-1100.
Jeschke, P., Nauen, R., Schindler, M., & Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of agricultural and food chemistry, 59(7), 2897-2908.
Lattin, J. D. (1999). Bionomics of the Anthocoridae. Annual Review of Entomology, 44, 207.
Li, S. J., Xue, X., Ahmed, M. Z., Ren, S. X., Du, Y. Z., Wu, J. H., ... & Qiu, B. L. (2011). Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Insect Science, 18(1), 101-120.
Lisha, V. S., Antony, B., Palaniswami, M. S., & Henneberry, T. J. (2003). Bemisia tabaci (Homoptera: Aleyrodidae) biotypes in India. Journal of Economic Entomology, 96(2), 322-327.
Marasinghe, J. P., Hemachandra, K. S., Nugaliyadde, L., & Karunaratne, S. H. P. P. (2017). Control failure of Sri Lankan whitefly (Bemisia tabaci Genn.) is due to high resistance development against recommended insecticides. Journal of the National Science Foundation of Sri Lanka, 45(1).
Masuda, K., Kato, M., & Saito, T. (2016). Reduction in carotenoid and chlorophyll content induced by the sweet potato whitefly, Bemisia tabaci. Scientia Horticulturae, 200, 102-104.
Matsumura, F. (1985). Metabolismo de inseticidas por animais e plantas. Em Toxicologia de inseticidas (pp. 203-298). Springer, Boston, MA.
Mehta, P., Wyman, J. A., Nakhla, M. K., & Maxwell, D. P. (1994). Transmission of tomato yellow leaf curl Geminivirns by Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 87(5), 1291-1297.
Ministério da Agricultura PeA. Agrofit. (2014). Coordenação Geral de Agrotóxicos e Afins/DFIA/DAS.
Naranjo, S. E., Castle, S. J., Barro, P. J. D., & Liu, S. S. (2009). Population dynamics, demography, dispersal and spread of Bemisia tabaci. In Bemisia: Bionomics and management of a global pest (pp. 185-226). Springer, Dordrecht.
Naveen, N. C., Chaubey, R., Kumar, D., Rebijith, K. B., Rajagopal, R., Subrahmanyam, B., & Subramanian, S. (2017). Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific reports, 7(1), 1-15.
Nemec, K., Beckendorf, E., Hesler, L., Riedell, W., & Lundgren, J. (2016). The effect of flowering calendula and cuphea plants on Orius insidiosus survival and predation of Aphis glycines. Biocontrol Science and Technology, 26(1), 12-22.
Pereira, R. R., Picanço, M. C., Santana Jr, P. A., Moreira, S. S., Guedes, R. N., & Corrêa, A. S. (2014). Insecticide toxicity and walking response of three pirate bug predators of the tomato leaf miner Tuta absoluta. Agricultural and Forest Entomology, 16(3), 293-301.
Qu, C., Zhang, W., Li, F., Tetreau, G., Luo, C., & Wang, R. (2017). Lethal and sublethal effects of dinotefuran on two invasive whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Asia-Pacific Entomology, 20(2), 325-330.
Ramos, R. S., Sediyama, C. S., Queiroz, E. A., Costa, T. L., Martins, J. C., Araújo, T. A., & Picanço, M. C. (2017). Toxicity of insecticides to Chrysodeixis includens and their direct and indirect effects on the predator Blaptostethus pallescens. Journal of Applied Entomology, 141(9), 677-689.
Ramos, R. S., de Araújo, V. C., Pereira, R. R., Martins, J. C., Queiroz, O. S., Silva, R. S., & Picanço, M. C. (2018). Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere, 191, 770-778.
Ripper, W. E., Greenslade, R. M., & Hartley, G. S. (1951). Selective insecticides and biological control. Journal of Economic Entomology, 44(4), 448-459.
Robertson, J. L., Jones, M. M., Olguin, E., & Alberts, B. (2017). Bioassays with arthropods. CRC press.
Roditakis, E., Stavrakaki, M., Grispou, M., Achimastou, A., Van Waetermeulen, X., Nauen, R., & Tsagkarakou, A. (2017). Flupyradifurone effectively manages whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) and tomato yellow leaf curl virus in tomato. Pest management science, 73(8), 1574-1584.
SAS Institute. (2013). PROC user’s manual, version 9.4, 2nd ed. SAS Institute, Cary, NC.
Sharaf, N. (1986). Chemical control of Bemisia tabaci. Agriculture, ecosystems & environment, 17(1-2), 111-127.
Silva, G. A., Picanço, M. C., Bacci, L., Crespo, A. L. B., Rosado, J. F., & Guedes, R. N. C. (2011). Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest management science, 67(8), 913-920.
Smith, H. A., & Giurcanu, M. C. (2014). New insecticides for management of Tomato yellow leaf curl, a virus vectored by the silverleaf whitefly, Bemisia tabaci. Journal of Insect Science, 14(1).
Vandervoet, T. F., Ellsworth, P. C., Carrière, Y., & Naranjo, S. E. (2018). Quantifying conservation biological control for management of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton. Journal of Economic Entomology, 111(3), 1056-1068.
Vásquez-Castro, J. A., De Baptista, G. C., Gadanha, C. D., & Trevizan, L. R. P. (2012). Insecticidal effect and residual action of fenitrothion and esfenvalerate on Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae) in stored maize and wheat. International Scholarly Research Notices, 2012.
Yu, Y., Zhu, H., Ozkan, H. E., Derksen, R. C., & Krause, C. R. (2009). Evaporation and deposition coverage area of droplets containing insecticides and spray additives on hydrophilic, hydrophobic, and crabapple leaf surfaces. Transactions of the ASABE, 52(1), 39-49.
Zhao, J., Guo, X., Tan, X., Desneux, N., Zappala, L., Zhang, F., & Wang, S. (2017). Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Management Science, 73(3), 515-520.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Leonardo Ikari Kon; Rodrigo Soares Ramos; Jhersyka da Silva Paes; Vitor Carvalho Ribeiro de Araújo; Patrícia Fernandes da Silva; Tamíris Alves de Araújo; Marcelo Coutinho Picanço
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.