Neonatal Transportation Device with Antimicrobial Properties

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.32269

Keywords:

Neonatal transportation; Chitosan; Antimicrobian activity.

Abstract

The transport of newborns implies the guarantee of a safe, comfortable and contamination-free handling, in view of the greater risk of contact of the baby with pathological agents in the hospital environment. Considering the antimicrobial capacity of chitosan and the possibility of depositing it on tissues, this work aimed to develop a neonatal transport system for newborns at normal risk (Baby-Bag) impregnated with this polymer. Starting from the briefing, hand drawings and image manipulation software were developed to better express the suggested concepts, followed by the 3D rendering of Baby-Bag. The samples were produced in Ribana type mesh (200g/m²). For chitosan impregnation, the blasting method was used, with polymer solutions at different concentrations (0.5; 1 and 2 %), followed by neutralization. Then, the meshes were characterized by Optical Microscopy (OM), Fourier Transform Infrared Spectroscopy (FTIR), Tensile Strength, Antimicrobial Activity and Citotoxicity. The MO and FTIR techniques indicated a partial detachment/loss of the chitosan impregnation during the washing and drying processes, while the mechanical test indicated that the chitosan incorporation increased the elastic modulus of the fabrics. According to the biological results, it can be stated that the material is non-toxic and has gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) antimicrobial activity. Thus, it can be concluded that the neonatal transport system for newborns has the potential to be used as safe maternal and child transport.

References

Ávila, A., Bierbrauer, K., Pucci, G., López-González, M., & Strumia, M. (2012). Study of optimization of the synthesis and properties of biocomposite films based on grafted chitosan. Journal of Food Engineering, 109, 4,752-761.

Bergh, A.-M., Graft-Johnson, J., Khadka, N., Om’iniabohs, A., Udani, R., Pratomo, H., & Leon-Mendoza, S. (2016). The three waves in implementation of facility-based kangaroo mother care: a multi-country case study from Asia. BMC International Health And Human Rights, 16, 4-10.

Cheah, W. Y., Show, P. L., Ng, I. S., Lin, G. Y., Chiu, C. Y., & Chang, Y. K. (2019). Antibacterial activity of quaternized chitosan modified nanofiber membrane. International Journal Of Biological Macromolecules, 126, 569-577.

Chen, J. P., Kuo, C. Y., & Lee, W. L. (2012). Thermo-responsive wound dressing by grafting chitosan and poly (N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Applied Surface Science, 262, 95-101.

Devikala, S., Kamaraj, P., & Arthanareeswar, M. (2019). AC conductivity studies of PVA/Al2O3 composites. Materials Today: Proceedings, 14, 288-295.

Dias, A. M., Cabrera, M. P. S., Lima, A. M. F., Taboga, S. R., Vilamaior, P. S. L., Tiera, M. J., & Tiera, V. A. O. (2018). Insights on the antifungal activity of amphiphilic derivates of diethylaminoethyl chitosan against Aspergillus flavus. Carbohydrate polymers, 196, 433-444.

Farahmandjou, M., & Motaghi, S. (2019). Sol-gel synthesis of Ce-doped α-Al2O3: Study of crystal and optoelectronic properties. Optics Communications, 441, 1–7.

Iqbal, M. M. A., Bakar, W. A., Toemen, S., Razak, F. I. A., & Azelee, N. I. W. N. (2020). Optimizationstudyby Box-Behnken design (BBD) and mechanistic insight of CO2 methanation over Ru-Fe-Ce/γ-Al2O3 catalyst by in-situ FTIR Technique. Arabian Journal of Chemistry, 13 (2), 4170-4179.

Jean, M. S. (2013). Introduction to molecular vibration and infrared spectroscopy. Chemistry, 362, 1-9.

Fráguas, R. M., Rocha, D. A., Queiroz, E. R., Abreu, C. M. P., Sousa, R. V., & Oliveira, Ê. N. (2015). Caracterização química e efeito cicatrizante de quitosana, com baixos valores de masssa molar e grau de acetilação em lesões cutâneas. Polímeros, 25, 2, 205-211.

Hernando, J. M., Lluch, M. T., García, E. S., Gracia, S. R., Lorenzo, J. F., Urcelay, I. E., Mussons, F. B., Carrillo, G. H., & Luna, M. S. (2013). Recomendaciones sobre transporte neonatal. Anales de pediatria, 79, 2, 117. e1-117. e7.

Marciano, R. P. (2016). A constituição do vínculo materno com o bebê prematuro: possibilidades de intervenção precoce. Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Góias, 142f.

Matsushita, A. F. T., Inaba, J., Fujiwara, S. T., Wohnrath, K., Garcia, J. R., & Pessoa, C. A. (2013). Síntese e caracterização de nanopartículas de prata no polieletrolítico cloreto de 3-n-Propilpiridínio Silsexquioxano para aplicações em materiais têxteis. Ciências Exatas e da Terra, Agrárias e Engenharias, 18, 39-50.

Nasir, M., Fatima, N., Khan, K. M., Zahra, D. N., Ansar, N., & Khan, S. T. (2015). Spectroscopic and morphological investigation of chemically treated cellulose nanowhiskers (cnw) prepared from cotton sliver. Applied nanoscience, 5, 3, 291–296.

Periolatto, M, Ferrero, F., & Vineis, C. (2012). Antimicrobial chitosan finish of cotton and silk fabrics by UV-curing with 2-hydroxy-2-methylphenylpropane-1-one. Carbohydrate Polymers, 88, 201-205.

Rodrigues, Y. W., Okimoto, M. L. L. R., & Heemann, A. (2014). Transporte de pacientes por macas hospitalares: uma análise metodológica. Blucher Design Proceedings, 3637.

Santos, D. M., Junior, A. R. C., & Cutrim, B. S. (2018). New experimental approaches to combat infections caused by Staphylococcus aureus. Revista Investigação Biomédica, 230, 142-150.

Silva, M. C., Silva, H. N., Alves, R. D. C., Sagoe-Amoah, S. K., Silva, S. M., & Fook, M. V. L. (2019). N-Acetyl-D-Glucosamine-Loaded Chitosan Filaments Biodegradable and Biocompatible for Use as Absorbable Surgical Suture Materials. Materials, 12, 11, 1807-1812.

Simões, A. S., Mori, R. Y., Faria, R., Castro, H. F. D., & Mendes, A. A. (2011). Desempenho da matriz híbrida SiO2-Quitosana na imobilização da lipase microbiana da Candida rugosa. Química nova, 34, 33-38.

Siqueira, M. L. B., Silva, R. A., & Mendes S. O. (2019). Levantamento de agentes etiológicos associados a infecção urinária e faixa etária das gestantes cadastradas no laboratório central municipal de saúde de Rondonópolis, MT. Biodiversidade, 2, 33-36.

Souza, C. O.; Melo, T. R. B., & Melo, C. S. B. (2016). Enteropathogenic Escherichia coli: a versatile diarrheagenic category. Revista Pan-Amazônica de Saude, 20, 91-96.

Thambiraj, S., & Shankaran, D. R. (2017). Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Applied surface science, 412, 405–416.

Venancio, S. I., & Almeida, H. D. (2004). Método Mãe Canguru: aplicação no Brasil, evidências científicas e impacto sobre o aleitamento materno. Jornal Pediatria, 80, 5, 173-180.

Zornio, C. F. (2013). Preparação e Caracterização do complexo de inclusão de β-ciclodextrina /(z)-jasmona e da fibra de algodão enxertada com β-ciclodextrina. Programa de Pós Graduação em Química da Universidade Federal de Santa Catarina, 127f.

Published

23/07/2022

How to Cite

DINIZ, C. M. G. P. .; TISSIANI, J. N. A. .; SOUSA, W. J. B. .; BARBOSA, R. C. .; BURITI, J. da S. .; BARRETO, M. E. V. .; MEDEIROS MACÊDO, M. D.; FOOK, M. V. L. . Neonatal Transportation Device with Antimicrobial Properties. Research, Society and Development, [S. l.], v. 11, n. 10, p. e60111032269, 2022. DOI: 10.33448/rsd-v11i10.32269. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32269. Acesso em: 4 oct. 2022.

Issue

Section

Engineerings